Neural Modeling

  • Chapter
  • First Online:
Neural Engineering

Abstract

The brain is extraordinarily complex, containing 1011 neurons linked with 1014 connections. We can improve our understanding of individual neurons and neuronal networks by describing their behavior in mathematical and computational models. This chapter provides an introduction to neural modeling, laying the foundation for several basic models and surveying key topics. After some discussion on the motivations of modelers and the uses of neural models, we explore the properties of electrically excitable membranes. We describe in some detail the Hodgkin–Huxley model, the first neural model to describe biophysically the behavior of biological membranes. We explore how this model can be extended to describe a variety of excitable membrane behaviors, including axonal propagation, dendritic processing, and synaptic communication. This chapter also covers mathematical models that replicate basic neural behaviors through more abstract mechanisms. We briefly explore efforts to extend single-neuron models to the network level and provide several examples of insights gained through this process. Finally, we list common resources, including modeling environments and repositories, that provide the guidance and parameter sets necessary to begin building neural models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weiss TF (1996) Cellular biophysics, vol 2, Electrical properties. MIT Press, Cambridge, MA

    Google Scholar 

  2. Weiss TF (1996) Cellular biophysics, vol 1, Transport. MIT Press, Cambridge, MA

    Google Scholar 

  3. Johnston D, Wu SM-S (1994) Foundations of cellular neurophysiology, 1st edn. MIT Press, Cambridge, MA

    Google Scholar 

  4. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Google Scholar 

  5. Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Reiss RF (ed) Neural theory and modeling. Stanford University Press, Stanford

    Google Scholar 

  6. Rall W (1995) The theoretical foundation of dendritic function: selected papers of Wilfrid Rall with commentaries. MIT Press, Cambridge, MA

    Google Scholar 

  7. Goldman L, Albus JS (1968) Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys J 8(5):596–607

    Article  Google Scholar 

  8. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MA

    Google Scholar 

  9. McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318

    Google Scholar 

  10. Sherman SM (2001) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24(2):122–126

    Article  MathSciNet  Google Scholar 

  11. Fernandez FR, Engbers JDT, Turner RW (2007) Firing dynamics of cerebellar purkinje cells. J Neurophysiol 98(1):278–294

    Article  Google Scholar 

  12. Del Negro CA, Chandler SH (1997) Physiological and theoretical analysis of K+ currents controlling discharge in neonatal rat mesencephalic trigeminal neurons. J Neurophysiol 77(2):537–553

    Google Scholar 

  13. Alonso A, Llinás RR (1989) Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342(6246):175–177

    Article  Google Scholar 

  14. Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23(5):216–222

    Article  Google Scholar 

  15. Dickson CT, Magistretti J, Shalinsky MH, Fransén E, Hasselmo ME, Alonso A (2000) Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol 83(5):2562–2579

    Google Scholar 

  16. Aiken SP, Lampe BJ, Murphy PA, Brown BS (1995) Reduction of spike frequency adaptation and blockade of M-current in rat CA1 pyramidal neurones by linopirdine (DuP 996), a neurotransmitter release enhancer. Br J Pharmacol 115(7):1163–1168

    Article  Google Scholar 

  17. Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 354:319–331

    Google Scholar 

  18. Fleidervish IA, Friedman A, Gutnick MJ (1996) Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol 493(Pt 1):83–97

    Google Scholar 

  19. Williams SR, Christensen SR, Stuart GJ, Häusser M (2002) Membrane potential bistability is controlled by the hyperpolarization-activated current I(H) in rat cerebellar Purkinje neurons in vitro. J Physiol 539(2):469–483

    Article  Google Scholar 

  20. Guttman R, Lewis S, Rinzel J (1980) Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. J Physiol 305:377–395

    Google Scholar 

  21. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge, MA

    Google Scholar 

  22. Rall W (1957) Membrane time constant of motoneurons. Science 126(3271):454

    Article  Google Scholar 

  23. Stuart G, Spruston N, Hausser M (2007) Dendrites, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  24. Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505(Pt 3):605–616

    Article  Google Scholar 

  25. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367(6458):69–72

    Article  Google Scholar 

  26. Johnston D, Narayanan R (2008) Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 31(6):309–316

    Article  Google Scholar 

  27. Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404(6775):285–289

    Article  Google Scholar 

  28. Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9:620–635

    Google Scholar 

  29. Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14(6–7):883–894

    Article  Google Scholar 

  30. Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  31. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070

    Article  Google Scholar 

  32. Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87(2):1129–1131

    Google Scholar 

  33. Marder E, Goaillard J-M (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7(7):563–574

    Article  Google Scholar 

  34. Swensen AM, Bean BP (2005) Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. J Neurosci 25(14):3509–3520

    Article  Google Scholar 

  35. Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61(2):331–349

    Google Scholar 

  36. Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10(9):910–923

    Article  Google Scholar 

  37. Griffith JS (1963) On the stability of brain-like structures. Biophys J 3:299–308

    Article  MathSciNet  Google Scholar 

  38. Abeles M (1982) Local cortical circuits: an electrophysiological study. Springer, Berlin

    Book  Google Scholar 

  39. Traub R, Wong R (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216(4547):745–747

    Article  Google Scholar 

  40. McIntyre CC, Grill WM, Sherman DL, Thakor NV (2004) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91(4):1457–1469

    Article  Google Scholar 

  41. Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. NeuroImage 34(2):661–670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Economo, M.N., Martinez, J.J., White, J.A. (2013). Neural Modeling. In: He, B. (eds) Neural Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5227-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5227-0_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-5226-3

  • Online ISBN: 978-1-4614-5227-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation