Micro-scaled Three-Dimensional Architectures for Battery Applications

  • Chapter
  • First Online:
Nanotechnology for Lithium-Ion Batteries

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The concept of 3D microbatteries provides an approach which could result in a step change in the energy and power per footprint of surface-mountable rechargeable batteries for microelectromechanical systems (MEMS) and other small electronic devices. The proposed structure has a high aspect ratio microstructured current collector coated in the three battery active layers (cathode, anode and electrolyte), each layer being a few microns in thickness; this reduces the length of the diffusion path through the layers, maximising the power capability. The high aspect ratio of these batteries also allows for significant increases in the energy storage per footprint area. This chapter outlines the design principles for 3D microbatteries and estimates the geometrical and physical requirements of the materials. Relevant examples of microbattery half-cells and full cells are presented to illustrate the key fabrication methods. Moreover, the same basic concepts and techniques presented could be used in the future to fabricate batteries at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Long JW, Dunn B, Rolison DR, White HS (2004) Three-dimensional battery architectures. Chem Rev 104(10):4463–4492

    Article  CAS  Google Scholar 

  2. Rolison DR, Long JW, Lytle JC, Fischer AE, Rhodes CP, McEvoy TM, Bourg ME, Lubers AM (2009) Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 38(1):226–252

    Article  CAS  Google Scholar 

  3. Vittorio SA (2001) http://www.csa.com/discoveryguides. [Online]. Available: http://www.csa.com/discoveryguides/mems/overview.php

  4. Bates J, Dudney NJ, Neudecker B, Ueda A, Evans CD (2000) Thin-film lithium and lithium-ion batteries. Solid State Ionics 135(1–4):33–45

    Article  CAS  Google Scholar 

  5. Souquet J, Duclot M (2002) Thin film lithium batteries. Solid State Ionics 148(3–4):375–379

    Article  CAS  Google Scholar 

  6. Hart RW, White HS, Dunn B, Rolison DR (2003) 3-D microbatteries. Electrochem Commun 5(2):120–123

    Article  CAS  Google Scholar 

  7. Jones S, Akridge J (1995) Development and performance of a rechargeable thin-film solid-state microbattery. J Power Sources 54(1):63–67

    Article  CAS  Google Scholar 

  8. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based re-chargeable batteries. Chem Rev 104(10):4303–4417

    Article  CAS  Google Scholar 

  9. Kim H, Auyeung R, Pique A (2007) Laser-printed thick-film electrodes for solid-state rechargeable Li-ion microbatteries. J Power Sources 165(1):413–419

    Article  CAS  Google Scholar 

  10. Owen JR (1997) Rechargeable lithium batteries. Chem Soc Rev 26:259–267

    Article  CAS  Google Scholar 

  11. Johns P, Roberts M, Wakizaka Y, Sanders JH, Ow-en J (2009) How the electrolyte limits fast discharge in nanostructured batteries and supercapacitors. Electrochem Commun 11(11):2089–2092

    Article  CAS  Google Scholar 

  12. Dong W, Rolison DR, Dunn B (1999) Electrochemical properties of high surface area vanadium oxide aerogels. Electrochem Solid-State Lett 3(10):457

    Article  Google Scholar 

  13. Long JW, Swider-Lyons KE, Stroud RM, Rolison DR (2000) Design of pore and matter architectures in manganese oxide charge-storage materials. Electrochem Solid-State Lett 3(10):453

    Article  CAS  Google Scholar 

  14. Shaijumon MM, Perre E, Daffos B, Taberna P, Tarascon J-M, Simon P (2010) Nanoarchitectured 3D cathodes for Li-ion microbatteries. Adv Mater 22:4978–4981

    Article  CAS  Google Scholar 

  15. Mazor H, Golodnitsky D, Burstein L, Peled E (2009) High power copper sulfide cathodes for thin-film microbatteries. Electrochem Solid-State Lett 12(12):232–235

    Article  Google Scholar 

  16. Tonti D, Torralvo MJ, Enciso E, Sobrados I, Sanz J (2008) Three-dimensionally ordered macroporous lithium manganese oxide for rechargeable lithium batteries. Chem Mater 20(14):4783–4790

    Article  CAS  Google Scholar 

  17. Park BG, Kim S, Kim I-D, Park YJ (2010) Structural and electrochemical performance of three-dimensional LiMn2O4 thin film. J Mater Sci 45(14):3947–3953

    Article  CAS  Google Scholar 

  18. Teixidor G, Zaouk R, Park B, Madou M (2008) Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries. J Power Sources 183(2):730–740

    Article  CAS  Google Scholar 

  19. Min H-S, Park BY, Taherabadi L, Wang C, Yeh Y, Zaouk R, Madou MJ, Dunn B (2008) Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J Power Sources 178(2):795–800

    Article  CAS  Google Scholar 

  20. Fleischauer MD, Li J, Brett MJ (2009) Columnar thin films for three-dimensional microbatteries. J Electrochem Soc 156(1):A33

    Article  CAS  Google Scholar 

  21. Cheah SK, Perre E, Rooth M, Fondell M, Hårsta A, Nyholm L, Boman M, Lu J, Simon P, Edstro K (2009) Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Lett 9(9):3230–3233

    Article  CAS  Google Scholar 

  22. Perre E, Taberna PL, Mazouzi D, Poizot P, Gustafsson T, Edström K, Simon P (2010) Electrodeposited Cu2Sb as anode material for 3-dimensional Li-ion microbatteries. J Mater Res 25(8):1485–1491

    Article  CAS  Google Scholar 

  23. Chamran F, Yeh Y, Min H-S, Dunn B, Kim C-J (2007) Fabrication of high-aspect-ratio electrode arrays for three-dimensional microbatteries. J Microelectromech Syst 16(4):844–852

    Article  CAS  Google Scholar 

  24. Zadin V, Kasemägi H, Aabloo A, Brandell D (2010) Modelling electrode material utilization in the trench model 3D-microbattery by finite element analysis. J Power Sources 195(18):6218–6224

    Article  CAS  Google Scholar 

  25. Dunn B, Kim CJ, Tolbert S (2010) Three-dimensional microbatteries for MEMS/NEMS technology. In: Proceedings of the 2010 IEEE 23rd international conference on micro electro mechanical systems (MEMS), Hong Kong, pp 164–167

    Google Scholar 

  26. Golodnitsky D, Nathan M, Yufit V, Strauss E, Freed-man K, Burstein L, Gladkich A, Peled E (2006) Progress in three-dimensional (3D) Li-ion microbatteries. Solid State Ionics 177(26–32):2811–2819

    Article  CAS  Google Scholar 

  27. Golodnitsky D, Yufit V, Nathan M, Shechtman I, Ripenbein T, Strauss E, Menkin S, Peled E (2006) Advanced materials for the 3D microbattery. J Power Sources 153(2):281–287

    Article  CAS  Google Scholar 

  28. Attard GS, Bartlett PN, Coleman NRB, Elliott JM, Wang JH (1997) Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278(5339):838–840

    Article  CAS  Google Scholar 

  29. Elliott JM, Attard GS, Bartlett PN, Coleman NRB, Merckel DAS, Owen JR (1999) Nanostructured platinum (H I -ePt) films: effects of electrodeposition conditions on film properties. Chem Mater 11(7):3602–3609

    Article  CAS  Google Scholar 

  30. Ripenbein T, Golodnitsky D, Nathan M, Peled E (2009) Electroless nickel current collector for 3D-microbatteries. J Appl Electrochem 40(2):435–444

    Article  Google Scholar 

  31. Notten PHL, Roozeboom F, Niessen RAH, Bag-getto L (2007) 3-D integrated all-solid-state rechargeable batteries. Adv Mater 19(24):4564–4567

    Article  CAS  Google Scholar 

  32. Nathan M, Golodnitsky D, Yufit V, Strauss E, Ripenbein T, Shechtman I, Menkin S, Peled E (2005) Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS. J Microelectromech Syst 14(5):879–885

    Article  CAS  Google Scholar 

  33. Long JW, Rhodes CP, Young AL, Rolison DR (2003) Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates: making mesoporous MnO 2 nanoarchitectures stable in acid electrolytes. Nano Lett 3(8):1155–1161

    Article  CAS  Google Scholar 

  34. El-Enany G, Lacey MJ, Johns PA, Owen JR (2009) In situ growth of polymer electrolytes on lithium ion electrode surfaces. Electrochem Commun 11(12):2320–2323

    Article  CAS  Google Scholar 

  35. Dokko K, Sugaya J, Nakano H, Yasukawa T, Matsue T, Kanamura K (2007) Sol–gel fabrication of lithium-ion micro-array battery. Electrochem Commun 9(5):857–862

    Article  CAS  Google Scholar 

  36. Wang C, Taherabadi L, Jia G, Madou M, Yeh Y, Dunn B (2004) C-MEMS for the manufacture of 3D microbatteries. Electrochem Solid-State Lett 7(11):A435

    Article  CAS  Google Scholar 

  37. Kinoshita K, Song X, Kim J, Inaba M (1999) Development of a carbon-based lithium microbattery. J Power Sources 81–82(1–2):170–175

    Article  Google Scholar 

  38. Kotobuki M, Suzuki Y, Munakata H, Kanamura K, Sato Y, Yamamoto K, Yoshida T (2010) Fabrication of three-dimensional battery using ceramic electrolyte with honey-comb Structure by sol–gel process. J Electrochem Soc 157(4):A493

    Article  CAS  Google Scholar 

  39. Chamran F, Min H, Dunn B, Kim CCJ (2007) Zinc-air microbattery with electrode array of zinc microposts, Mechanical and Aerospace Engineering Dept., 2 Materials Science and Engineering Dept. In: Proceedings of the Micro Electro Mechanical Systems, MEMS. IEEE 20th international conference, Kobe, pp 871–874

    Google Scholar 

  40. Chamran F, Min H, Dunn B (2006) Three-dimensional nickel-zinc microbatteries. In: Proceedings of the Micro Electro Mechanical Systems, MEMS 2006, Istanbul. 19th IEEE international conference, vol 2, pp 950–953

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the EU FP7 project Superlion for continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roberts, M., Johns, P., Owen, J. (2012). Micro-scaled Three-Dimensional Architectures for Battery Applications. In: Abu-Lebdeh, Y., Davidson, I. (eds) Nanotechnology for Lithium-Ion Batteries. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4605-7_10

Download citation

Publish with us

Policies and ethics

Navigation