Physiologic and Metabolic Regulation of Adenosine: Mechanisms

  • Chapter
  • First Online:
Adenosine

Abstract

Adenosine is the purine nucleoside core of adenosine triphosphate (ATP), a molecule that allows biological energy storage, and changes in intracellular adenosine levels are thought to reflect the energy state of the cell: during net ATP consumption, adenosine accumulates. Via adenosine A1 receptors, increases in extracellular adenosine can decrease neuronal excitability rapidly. Accordingly, the interplay between energy use and neuronal activity provides a feedback system by which increased energy utilization can decrease energy demand. This is, however, a simplistic view of the regulation of adenosine in the nervous system. Advances in adenosine measurement and genetic tools to dissect the sources of adenosine have lent insight into a dynamic physiological regulation of adenosine and a bevy of cellular changes which alter adenosine tone. Here we examine recent work probing specific physiologic and metabolic changes which influence adenosine (and thus synaptic transmission), focusing primarily on the hippocampus. We summarize the current understanding of how tonic extracellular adenosine levels are set and highlight unanswered questions. Regarding dynamic physiological regulation, we outline how stimuli such as pH, neuronal activity, altered metabolism, and hypoxia can modulate adenosine levels. Using specific examples, we describe how changes in adenosine may act to normalize or restore physiologic and metabolic balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aram JA, Lodge D (1987) Epileptiform activity induced by alkalosis in rat neocortical slices: block by antagonists of N-methyl-D-aspartate. Neurosci Lett 83:345–350

    Article  CAS  PubMed  Google Scholar 

  • Balestrino M, Somjen GG (1988) Concentration of carbon dioxide, interstitial pH and synaptic transmission in hippocampal formation of the rat. J Physiol 396:247–266

    CAS  PubMed  Google Scholar 

  • Barnes K, Dobrzynski H, Foppolo S, Beal PR, Ismat F, Scullion ER, Sun L, Tellez J, Ritzel MW, Claycomb WC, Cass CE, Young JD, Billeter-Clark R, Boyett MR, Baldwin SA (2006) Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH. Circ Res 99:510–519

    Article  CAS  PubMed  Google Scholar 

  • Belcher SM, Zsarnovszky A, Crawford PA, Hemani H, Spurling L, Kirley TL (2006) Immunolocalization of ecto-nucleoside triphosphate diphosphohydrolase 3 in rat brain: implications for modulation of multiple homeostatic systems including feeding and sleep-wake behaviors. Neuroscience 137:1331–1346

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2006) Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 27:652–658

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2010) Adenosine dysfunction and adenosine kinase in epileptogenesis. Open Neurosci J 4:93–101

    CAS  PubMed  Google Scholar 

  • Boison D, Masino SA, Geiger JD (2011) Homeostatic bioenergetic network regulation—a novel concept to avoid pharmacoresistance in epilepsy. Expert Opin Drug Discov 6:713–724

    Article  CAS  PubMed  Google Scholar 

  • Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235

    Article  CAS  PubMed  Google Scholar 

  • Brager DH, Thompson SM (2003) Activity-dependent release of adenosine contributes to short-term depression at CA3-CA1 synapses in rat hippocampus. J Neurophysiol 89:22–26

    Article  CAS  PubMed  Google Scholar 

  • Brambilla D, Chapman D, Greene R (2005) Adenosine mediation of presynaptic feedback inhibition of glutamate release. Neuron 46:275–283

    Article  CAS  PubMed  Google Scholar 

  • Brundege J, Dunwiddie TV (1997) Role of adenosine as a modulator of synaptic activity in the central nervous system. Adv Pharmacol 39:353–391

    Article  CAS  PubMed  Google Scholar 

  • Brundege JM, Diao L, Proctor WR, Dunwiddie TV (1997) The role of cyclic AMP as a precursor of extracellular adenosine in the rat hippocampus. Neuropharmacology 36:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Cechova S, Venton BJ (2008) Transient adenosine efflux in the rat caudate-putamen. J Neurochem 105:1253–1263

    Article  CAS  PubMed  Google Scholar 

  • Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83:1183–1221

    CAS  PubMed  Google Scholar 

  • Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A 95:15735–15740

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Vizi ES, Ribeiro JA, Sebastiao AM (1996) Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. J Neurochem 67:2180–2187

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Sebastiao AM, Ribeiro JA (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J Neurosci 18:1987–1995

    CAS  PubMed  Google Scholar 

  • Dale N, Frenguelli BG (2009) Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 7:160–179

    Article  CAS  PubMed  Google Scholar 

  • Dale N, Pearson T, Frenguelli BG (2000) Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J Physiol 526(Pt 1):143–155

    Article  CAS  PubMed  Google Scholar 

  • Diarra A, Sheldon C, Brett CL, Baimbridge KG, Church J (1999) Anoxia-evoked intracellular pH and Ca2+ concentration changes in cultured postnatal rat hippocampal neurons. Neuroscience 93:1003–1016

    Article  CAS  PubMed  Google Scholar 

  • Dulla CG, Dobelis P, Pearson T, Frenguelli BG, Staley KJ, Masino SA (2005) Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron 48:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Dulla CG, Frenguelli BG, Staley KJ, Masino SA (2009) Intracellular acidification causes adenosine release during states of hyperexcitability in the hippocampus. J Neurophysiol 102:1984–1993

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV (1999) Adenosine and suppression of seizures. Adv Neurol 79:1001–1010

    CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Diao LH (1994) Extracellular adenosine concentrations in hippocampal brain slices and the tonic inhibitory modulation of evoked excitatory responses. J Pharmacol Exp Ther 268:537–545

    CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Fredholm BB (1985) Adenosine modulation of synaptic responses in rat hippocampus: possible role of inhibition or activation of adenylate cyclase. Adv Cyclic Nucleotide Protein Phosphorylation Res 19:259–272

    CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Masino S (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17:7673–7682

    CAS  PubMed  Google Scholar 

  • Dworak M, Diel P, Voss S, Hollmann W, Struder HK (2007) Intense exercise increases adenosine concentrations in rat brain: implications for a homeostatic sleep drive. Neuroscience 150:789–795

    Article  CAS  PubMed  Google Scholar 

  • Etherington LA, Frenguelli BG (2004) Endogenous adenosine modulates epileptiform activity in rat hippocampus in a receptor subtype-dependent manner. Eur J Neurosci 19:2539–2550

    Article  PubMed  Google Scholar 

  • Etherington LA, Patterson GE, Meechan L, Boison D, Irving AJ, Dale N, Frenguelli BG (2009) Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology 56:429–437

    Article  CAS  PubMed  Google Scholar 

  • Fellin T, Halassa MM, Terunuma M, Succol F, Takano H, Frank M, Moss SJ, Haydon PG (2009) Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proc Natl Acad Sci U S A 106:15037–15042

    Article  CAS  PubMed  Google Scholar 

  • Foley JC, McIver SR, Haydon PG (2011) Gliotransmission modulates baseline mechanical nociception. Mol Pain 7:93

    Article  CAS  PubMed  Google Scholar 

  • Fowler JC (1993) Purine release and inhibition of synaptic transmission during hypoxia and hypoglycemia in rat hippocampal slices. Neurosci Lett 157:83–86

    Article  CAS  PubMed  Google Scholar 

  • Freeman JM, Kossoff EH (2010) Ketosis and the ketogenic diet, 2010: advances in treating epilepsy and other disorders. Adv Pediatr 57:315–329

    Article  PubMed  Google Scholar 

  • Frenguelli BG, Llaudet E, Dale N (2003) High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J Neurochem 86:1506–1515

    Article  CAS  PubMed  Google Scholar 

  • Gouder N, Fritschy JM, Boison D (2003) Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy. Epilepsia 44(7):877–885

    Article  CAS  PubMed  Google Scholar 

  • Gouder N, Scheurer L, Fritschy JM, Boison D (2004) Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 24:692–701

    Article  CAS  PubMed  Google Scholar 

  • Guisado R, Arieff AI (1975) Neurologic manifestations of diabetic comas: correlation with biochemical alterations in the brain. Metabolism 24:665–679

    Article  CAS  PubMed  Google Scholar 

  • Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219

    Article  CAS  PubMed  Google Scholar 

  • Helmy MM, Tolner EA, Vanhatalo S, Voipio J, Kaila K (2011) Brain alkalosis causes birth asphyxia seizures, suggesting therapeutic strategy. Ann Neurol 69:493–500

    Article  PubMed  Google Scholar 

  • Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A 92:4666–4670

    Article  CAS  PubMed  Google Scholar 

  • Huffman ML, Venton BJ (2009) Carbon-fiber microelectrodes for in vivo applications. Analyst 134:18–24

    Article  CAS  PubMed  Google Scholar 

  • Irwin RP, Lin SZ, Long RT, Paul SM (1994) N-methyl-D-aspartate induces a rapid, reversible, and calcium-dependent intracellular acidosis in cultured fetal rat hippocampal neurons. J Neurosci 14:1352–1357

    CAS  PubMed  Google Scholar 

  • Jo YH, Role LW (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22:4794–4804

    CAS  PubMed  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Gimenez-Llort L, Escorihuela RM, Fernandez-Teruel A, Wiesenfeld-Hallin Z, Xu XJ, Hardemark A, Betsholtz C, Herlenius E, Fredholm BB (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A 98:9407–9412

    Article  CAS  PubMed  Google Scholar 

  • Juranyi Z, Orso E, Janossy A, Szalay KS, Sperlagh B, Windisch K, Vinson GP, Vizi ES (1997) ATP and [3H]noradrenaline release and the presence of ecto-Ca(2+)-ATPases in the capsule-glomerulosa fraction of the rat adrenal gland. J Endocrinol 153:105–114

    Article  CAS  PubMed  Google Scholar 

  • Kawamura M Jr, Ruskin DN, Masino SA (2010) Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J Neurosci 30:3886–3895

    Article  CAS  PubMed  Google Scholar 

  • Kelly T, Church J (2006) Relationships between calcium and pH in the regulation of the slow afterhyperpolarization in cultured rat hippocampal neurons. J Neurophysiol 96:2342–2353

    Article  CAS  PubMed  Google Scholar 

  • Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518

    Article  CAS  PubMed  Google Scholar 

  • Krizaj D, Mercer AJ, Thoreson WB, Barabas P (2011) Intracellular pH modulates inner segment calcium homeostasis in vertebrate photoreceptors. Am J Physiol Cell Physiol 300:C187–C197

    Article  CAS  PubMed  Google Scholar 

  • Krugel U, Schraft T, Kittner H, Kiess W, Illes P (2003) Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol 482:185–187

    Article  PubMed  CAS  Google Scholar 

  • Larsson M, Sawada K, Morland C, Hiasa M, Ormel L, Moriyama Y, Gundersen V (2011) Functional and anatomical identification of a vesicular transporter mediating neuronal ATP release. Cereb Cortex 22(5):1203–14

    Article  PubMed  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  CAS  PubMed  Google Scholar 

  • Lee PR, Kossoff EH (2011) Dietary treatments for epilepsy: management guidelines for the general practitioner. Epilepsy Behav 21:115–121

    Article  CAS  PubMed  Google Scholar 

  • Little JP, Safdar A, Benton CR, Wright DC (2011) Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis. Appl Physiol Nutr Metab 36:598–607

    Article  CAS  PubMed  Google Scholar 

  • Lloyd HG, Fredholm BB (1995) Involvement of adenosine deaminase and adenosine kinase in regulating extracellular adenosine concentration in rat hippocampal slices. Neurochem Int 26:387–395

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Chung HJ, Li Y, Rosenberg PA (2003) NMDA receptor-mediated extracellular adenosine accumulation in rat forebrain neurons in culture is associated with inhibition of adenosine kinase. Eur J Neurosci 17:1213–1222

    Article  PubMed  Google Scholar 

  • Manzoni OJ, Manabe T, Nicoll RA (1994) Release of adenosine by activation of NMDA receptors in the hippocampus. Science 265:2098–2101

    Article  CAS  PubMed  Google Scholar 

  • Masino SA, Dunwiddie TV (1999) Temperature-dependent modulation of excitatory transmission in hippocampal slices is mediated by extracellular adenosine. J Neurosci 19:1932–1939

    CAS  PubMed  Google Scholar 

  • Masino SA, Dunwiddie TV (2001) Role of purines and pyrimidines in the central nervous system. In: Abbracchio MP, Williams M (eds) Purinergic and pyrimidinergic signalling I. Springer, Berlin, pp 251–288

    Google Scholar 

  • Masino SA, Geiger JD (2008) Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci 31:273–278

    Article  CAS  PubMed  Google Scholar 

  • Masino SA, Kawamura M Jr, Ruskin DN, Geiger JD, Boison D (2011a) Purines and neuronal excitability: links to the ketogenic diet. Epilepsy Res Epub Aug 29

    Google Scholar 

  • Masino SA, Li T, Theofilas P, Sandau US, Ruskin DN, Fredholm BB, Geiger JD, Aronica E, Boison D (2011b) A ketogenic diet suppresses seizures in mice through adenosine A receptors. J Clin Invest 121:2679–2683

    Article  CAS  PubMed  Google Scholar 

  • Metzger JM, Moss RL (1990) pH modulation of the kinetics of a Ca2(+)-sensitive cross-bridge state transition in mammalian single skeletal muscle fibres. J Physiol 428:751–764

    CAS  PubMed  Google Scholar 

  • Mitchell JB, Lupica CR, Dunwiddie TV (1993) Activity-dependent release of endogenous adenosine modulates synaptic responses in the rat hippocampus. J Neurosci 13:3439–3447

    CAS  PubMed  Google Scholar 

  • Mori M, Heuss C, Gahwiler BH, Gerber U (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535:115–123

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa M, Kodama S, Matsuo T (1983) Effects of ketogenic diet on electroconvulsive threshold and brain contents of adenosine nucleotides. Brain Dev 5:375–380

    Article  CAS  PubMed  Google Scholar 

  • Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360

    CAS  PubMed  Google Scholar 

  • Pak MA, Haas HL, Decking UK, Schrader J (1994) Inhibition of adenosine kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology 33:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Pan JW, Williamson A, Cavus I, Hetherington HP, Zaveri H, Petroff OA, Spencer DD (2008) Neurometabolism in human epilepsy. Epilepsia 49(Suppl 3):31–41

    Article  CAS  PubMed  Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452:589–597

    Article  CAS  PubMed  Google Scholar 

  • Pantazis A, Keegan P, Postma M, Schwiening CJ (2006) The effect of neuronal morphology and membrane-permeant weak acid and base on the dissipation of depolarization-induced pH gradients in snail neurons. Pflugers Arch 452:175–187

    Article  CAS  PubMed  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  CAS  PubMed  Google Scholar 

  • Pearson T, Nuritova F, Caldwell D, Dale N, Frenguelli BG (2001) A depletable pool of adenosine in area CA1 of the rat hippocampus. J Neurosci 21:2298–2307

    CAS  PubMed  Google Scholar 

  • Pearson T, Damian K, Lynas RE, Frenguelli BG (2006) Sustained elevation of extracellular adenosine and activation of A1 receptors underlie the post-ischaemic inhibition of neuronal function in rat hippocampus in vitro. J Neurochem 97:1357–1368

    Article  CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    Article  CAS  PubMed  Google Scholar 

  • Pugliese AM, Latini S, Corradetti R, Pedata F (2003) Brief, repeated, oxygen-glucose deprivation episodes protect neurotransmission from a longer ischemic episode in the in vitro hippocampus: role of adenosine receptors. Br J Pharmacol 140:305–314

    Article  CAS  PubMed  Google Scholar 

  • Rebola N, Pinheiro PC, Oliveira CR, Malva JO, Cunha RA (2003) Subcellular localization of adenosine A(1) receptors in nerve terminals and synapses of the rat hippocampus. Brain Res 987:49–58

    Article  CAS  PubMed  Google Scholar 

  • Richardson PJ, Brown SJ (1987) ATP release from affinity-purified rat cholinergic nerve terminals. J Neurochem 48:622–630

    Article  CAS  PubMed  Google Scholar 

  • Roque FR, Soci UP, Angelis KD, Coelho MA, Furstenau CR, Vassallo DV, Irigoyen MC, Oliveira EM (2011) Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats. Clinics (Sao Paulo) 66:2105–2111

    Article  Google Scholar 

  • Schrader J, Wahl M, Kuschinsky W, Kreutzberg GW (1980) Increase of adenosine content in cerebral cortex of the cat during bicuculline-induced seizure. Pflugers Arch 387:245–251

    Article  CAS  PubMed  Google Scholar 

  • Shah GN, Ulmasov B, Waheed A, Becker T, Makani S, Svichar N, Chesler M, Sly WS (2005) Carbonic anhydrase IV and XIV knockout mice: roles of the respective carbonic anhydrases in buffering the extracellular space in brain. Proc Natl Acad Sci U S A 102:16771–16776

    Article  CAS  PubMed  Google Scholar 

  • Sheldon C, Church J (2002) Intracellular pH response to anoxia in acutely dissociated adult rat hippocampal CA1 neurons. J Neurophysiol 87:2209–2224

    CAS  PubMed  Google Scholar 

  • Siqueira IR, Elsner VR, Rilho LS, Bahlis MG, Bertoldi K, Rozisky JR, Batasttini AM, Torres IL (2010) A neuroprotective exercise protocol reduces the adenine nucleotide hydrolysis in hippocampal synaptosomes and serum of rats. Brain Res 1316:173–180

    Article  PubMed  CAS  Google Scholar 

  • Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5:193–197

    Article  CAS  Google Scholar 

  • Sperlagh B, Sershen H, Lajtha A, Vizi ES (1998) Co-release of endogenous ATP and [3H]noradrenaline from rat hypothalamic slices: origin and modulation by alpha2-adrenoceptors. Neuroscience 82:511–520

    Article  CAS  PubMed  Google Scholar 

  • Steiner JL, Murphy EA, McClellan JL, Carmichael MD, Davis JM (2011) Exercise training increases mitochondrial biogenesis in the brain. J Appl Physiol 111:1066–1071

    Google Scholar 

  • Studer FE, Fedele DE, Marowsky A, Schwerdel C, Wernli K, Vogt K, Fritschy JM, Boison D (2006) Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 142:125–137

    Article  CAS  PubMed  Google Scholar 

  • Sugiura Y, Taguchi R, Setou M (2011) Visualization of spatiotemporal energy dynamics of hippocampal neurons by mass spectrometry during a kainate-induced seizure. PLoS One 6:e17952

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT (2007) Carbonic anhydrases as drug targets—an overview. Curr Top Med Chem 7:825–833

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT, Scozzafava A (2007) Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 15:4336–4350

    Article  CAS  PubMed  Google Scholar 

  • Swain JA (1983) Regulation of pH during hypothermia. J Thorac Cardiovasc Surg 85:147–149

    CAS  PubMed  Google Scholar 

  • Takahashi N, Sasaki T, Matsumoto W, Matsuki N, Ikegaya Y (2010) Circuit topology for synchronizing neurons in spontaneously active networks. Proc Natl Acad Sci U S A 107:10244–10249

    Article  CAS  PubMed  Google Scholar 

  • Thompson RJ, Jackson MF, Olah ME, Rungta RL, Hines DJ, Beazely MA, MacDonald JF, MacVicar BA (2008) Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322:1555–1559

    Article  CAS  PubMed  Google Scholar 

  • Thorn JA, Jarvis SM (1996) Adenosine transporters. Gen Pharmacol 27:613–620

    Article  CAS  PubMed  Google Scholar 

  • Tolner EA, Hochman DW, Hassinen P, Otahal J, Gaily E, Haglund MM, Kubova H, Schuchmann S, Vanhatalo S, Kaila K (2011) Five percent CO is a potent, fast-acting inhalation anticonvulsant. Epilepsia 52:104–114

    Article  PubMed  Google Scholar 

  • Tonazzini I, Trincavelli ML, Storm-Mathisen J, Martini C, Bergersen LH (2007) Co-localization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus. Eur J Neurosci 26:890–902

    Article  CAS  PubMed  Google Scholar 

  • Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347–350

    Article  CAS  PubMed  Google Scholar 

  • Vogt KE, Gerharz S, Graham J, Canepari M (2011) High-resolution simultaneous voltage and Ca2+ imaging. J Physiol 589:489–494

    Article  CAS  PubMed  Google Scholar 

  • Wall M, Dale N (2008) Activity-dependent release of adenosine: a critical re-evaluation of mechanism. Curr Neuropharmacol 6:329–337

    Article  CAS  PubMed  Google Scholar 

  • Wang TF, Guidotti G (1998) Widespread expression of ecto-apyrase (CD39) in the central nervous system. Brain Res 790:318–322

    Article  CAS  PubMed  Google Scholar 

  • Whittingham T, Warman E, Assaf H, Sick T, LaManna J (1989) Manipulating the intracellular environment of hippocampal slices; pH and high energy phosphates. J Neurosci Methods 28:83–91

    Article  CAS  PubMed  Google Scholar 

  • Winn HR, Rubio R, Berne RM (1979) Brain adenosine production in the rat during 60 seconds of ischemia. Circ Res 45:486–492

    Article  CAS  PubMed  Google Scholar 

  • Winn HR, Welsh JE, Rubio R, Berne RM (1980) Changes in brain adenosine during bicuculline-induced seizures in rats. Effects of hypoxia and altered systemic blood pressure. Circ Res 47:868–877

    Article  Google Scholar 

  • **ong Z, Saggau P, Stringer J (2000) Activity-dependent intracellular acidification correlates with the duration of seizure activity. J Neurosci 20:1290–1296

    CAS  PubMed  Google Scholar 

  • Yamada Y, Goto H, Ogasawara N (1980) Purification and properties of adenosine kinase from rat brain. Biochim Biophys Acta 616:199–207

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, **ong W, Albensi BC, Parkinson FE (2011) Expression of human equilibrative nucleoside transporter 1 in mouse neurons regulates adenosine levels in physiological and hypoxic-ischemic conditions. J Neurochem 118:4–11

    Article  CAS  PubMed  Google Scholar 

  • Zhu PJ, Krnjevic K (1994) Endogenous adenosine deaminase does not modulate synaptic transmission in rat hippocampal slices under normoxic or hypoxic conditions. Neuroscience 63:489–497

    Article  CAS  PubMed  Google Scholar 

  • Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MA III, Welsh MJ, Wemmie JA (2008) Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 11:816–822

    Article  CAS  PubMed  Google Scholar 

  • zur Nedden S, Hawley S, Pentland N, Hardie DG, Doney AS, Frenguelli BG (2011) Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors. J Neurosci 31:6221–6234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Institutes of Health, National Science Foundation, Tufts University School of Medicine and Trinity College for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris G. Dulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dulla, C.G., Masino, S.A. (2013). Physiologic and Metabolic Regulation of Adenosine: Mechanisms. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_5

Download citation

Publish with us

Policies and ethics

Navigation