Retina: Neuroanatomy and Physiology

  • Reference work entry
Neuroscience in the 21st Century

Abstract

The sensory retina of vertebrates, a highly specialized extension of the brain, is a thin (~0.25 mm thick in the human eye), multilayered, photosensitive tissue coating the inner back of the eyeball (Fig. 22.1). The retina is responsible for (1) photoreception and transduction of light energy into neuronal activity and (2) initial stages of visual processing and integration according to the environmental light conditions. The visual information is then transferred through the optic nerve to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AQP:

Aquaporin

ATP:

Adenosine 5′-triphosphate

cGMP:

Cyclic guanosine 5′-monophosphate

CRALBP:

Cellular retinaldehyde-binding protein

dLGN:

Dorsal lateral geniculate body

EAAT:

Excitatory amino acid transporter

GABA:

γ-aminobutyric acid

GAT:

GABA transporter

GCL:

Ganglion cell layer

GFAP:

Glial fibrillary acidic protein

ILM:

Inner limiting membrane

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

Kir:

Inwardly rectifying potassium

NFL:

Nerve fiber layer

ONL:

Outer nuclear layer

OPL:

Outer plexiform layer

PRS:

Photoreceptor segment

RPE:

Retinal pigment epithelium

TH:

Tyrosine hydroxylase

TRP:

Transient receptor potential

Further Reading

  • Barlow HB (1953) Summation and inhibition in the frog’s retina. J Physiol 119:69–88

    PubMed  CAS  Google Scholar 

  • Barlow HB, Hill RM, Levick WR (1964) Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J Physiol 173:377–407

    PubMed  CAS  Google Scholar 

  • Cajal R y (1893) La rétine des vertébrés. Cellule

    Google Scholar 

  • Field GD, Chichilnisky EJ (2007) Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci 30:1–30

    Article  PubMed  CAS  Google Scholar 

  • Finlay BL (2008) The develo** and evolving retina: using time to organize form. Brain Res 1192:5–16

    Article  PubMed  CAS  Google Scholar 

  • Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 169:39–50

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC, Raghu P (2001) Visual transduction in Drosophila. Nature 413:186–193

    Article  PubMed  CAS  Google Scholar 

  • Hartline HK (1938) The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol 121:400–415

    Google Scholar 

  • Helmholtz H von (1852) Ueber die Theorie der zusammengesetzten Farben. Ann Phys Chem 87:45–66

    Google Scholar 

  • Hering E (1874) Zur Lehre vom Lichtsinn. VI. Grundzüge einer Theorie des Farbensinnes. Ber k u k Akad Wiss Wien 70:169ff

    Google Scholar 

  • Holmgren F (1865) Method att objectivera effecten af ljusintryck på retina. Uppsala Läk För Förh 1:184–98

    Google Scholar 

  • Kolb H, Nelson R, Fernandez E, Nelson R, Jones B (2011) Webvision. The Organization of the Retina and Visual System (Online book). www.webvision.med.utah.edu

  • Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68

    PubMed  CAS  Google Scholar 

  • Kühne W (1877) Ueber das Vorkommen des Sehpurpurs. Centralblatt Medicin Wiss 15:257–258

    Google Scholar 

  • Land MF, Nilsson DE (2009) Animal eyes. Oxford University Press, New York

    Google Scholar 

  • Lee BB, Martin PR, Grünert U (2010) Retinal connectivity and primate vision. Prog Retin Eye Res 29:622–639

    Article  PubMed  Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Eng 47:1940–1951

    Google Scholar 

  • Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4:877–886

    Article  PubMed  CAS  Google Scholar 

  • Merbs ML, Nathan J (1992) Absorption spectra of human cone pigments. Nature 356:433–435

    Article  PubMed  CAS  Google Scholar 

  • Morgan WW, Kamp CW (1980) Dopaminergic amacrine neurons of rat retinas with photoreceptor degeneration continue to respond to light. Life Sci 26:1619–1626

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci USA 101:14294–14299

    Article  PubMed  CAS  Google Scholar 

  • Müller H (1851) Zur Histologie der Netzhaut. Z Wiss Zool 3:234–237

    Google Scholar 

  • Müller H (1854) Anatomische Beiträge zur Ophthalmologie. Graefes Arch Clin Exp Ophthalmol 2:1, 269–271

    Google Scholar 

  • Reichenbach A, Schnitzer J, Friedrich A, Ziegert W, Brückner G, Schober W (1991) Development of the rabbit retina. I. Size of eye and retina, and postnatal cell proliferation. Anat Embryol 183:287–297

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach A, Schnitzer J, Friedrich A, Knothe AK, Henke A (1991) Development of the rabbit retina: II. Müller cells. J Comp Neurol 311:33–44

    Article  CAS  Google Scholar 

  • Reichenbach A, Bringmann A (2010) Müller cells in the healthy and diseased retina. Springer, New York

    Book  Google Scholar 

  • Ridge KD, Palczewski K (2007) Visual rhodopsin sees the light: structure and mechanism of G protein signaling. J Biol Chem 282:9297–9301

    Article  PubMed  CAS  Google Scholar 

  • Robinson SR, Dreher B, McCall MJ (1989) Nonuniform retinal expansion during the formation of the rabbit’s visual streak: implications for the ontogeny of mammalian retinal topography. Vis Neurosci 2:201–219

    Article  PubMed  CAS  Google Scholar 

  • Schulze M (1866) Zur Anatomie und Physiologie der Retina. Arch mikrosk Anat 2:175–286

    Article  Google Scholar 

  • Svaetichin G (1953) The cone action potential. Acta Physiol Scand 29(Suppl 106):565–600

    Google Scholar 

  • Tomita T (1965) Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harb Symp Quant Biol 30:559–566

    Article  PubMed  CAS  Google Scholar 

  • Tomita T (1968) Electrical response of single photoreceptors. Proc IEEE 56:1015–1023

    Article  Google Scholar 

  • Wald G, Brown PK (1965) Human color vision and color blindness. Cold Spring Harb Symp Quant Biol 30:345–361

    Article  PubMed  CAS  Google Scholar 

  • Wandell BA (1995) Foundations of vision. Sinauer Associates, Sunderland

    Google Scholar 

  • Wässle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747–757

    Article  PubMed  Google Scholar 

  • Wässle H, Boycott BB (1991)?Functional architecture of the mammalian retina. Physiol Rev 71:447–480

    PubMed  Google Scholar 

  • Young Th (1802) On the theory of light and colours. Philos Trans R Soc Lond 92:12–48.

    Article  Google Scholar 

  • Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42:392–403

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Reichenbach .

Editor information

Editors and Affiliations

Glossary

AII Cell

Subtype of glycinergic amacrine cells which connects the rod pathway to the cone output pathway.

Amacrine Cell

Interneuron in the IPL which lacks an axon.

Bipolar Cell

Cell with bipolar morphology (two main processes evolve from the perikaryum in opposite direction) transfers visual information from the synaptic terminals of photoreceptor cells to amacrine and ganglion cells.

Bistratified Cell

Cell with processes that branch in two distinct sublayers of the IPL.

Choriocapillaris

Inner sublayer of the choroidea which contains capillaries.

Ciliar Photoreceptor

Vertebrate-type photoreceptor which contains photopigments in invaginations of the cilium membrane.

Cone

Cone-like photoreceptor responsible for color vision under bright light conditions.

Dark Current

Current between photoreceptor outer and inner segments which is active in the dark.

Diffuse Amacrine

Amacrine cell with processes that branch vertically in different sublayers of the IPL.

Diffuse Bipolar

Bipolar cell which has a relatively large dendritic field and contacts several cone pedicles.

Displaced Cell

Cell with a perikaryum that is localized in an unusual retinal layer.

Dyad

A ribbon-containing structure of the synaptic terminal of a bipolar cell.

Fovea Centralis

The center of the fovea with the highest visual acuity, contains only cones.

Ganglion Cell

Output cell of the retina; its axon draws in the optic nerve to the brain.

Horizontal Cell

Interneuron that makes lateral visual information processing in the OPL.

Interplexiform Cell

Subtype of amacrine cells that regulates the activity of bipolar dendrites in the OPL in dependence on the activity of the IPL.

K Cell

Koniocellular cell.

Kir Channel

K+ channels of Müller cells implicated in spatial buffering of the extracellular K+ concentration.

Koniocellular Cell

Cell as small as dust.

M Cell

Large magnocellular (parasol) cell.

Macula Lutea

Yellowish area of the primate retina which includes the fovea, parafovea, and perifovea.

Melanopsin

Photopigment of intrinsically light-sensitive retinal ganglion cells.

Mesopic Vision

Rod and cone vision at middle to low light intensities.

Metarhodopsin

Light-activated rhodopsin that activates the phototransduction cascade.

Midget Cell

Small cell with small receptive field.

Müller Cell

The main macroglial cell of the retina.

Nuclear Layer

Layer that contains perikarya.

OFF-Cell

Cell which is inactivated when the center of the receptive field is illuminated.

ON-Cell

Cell which is activated when the center of the receptive field is illuminated.

Optic Disk

Optic nerve head; blind spot of the retina which does not contain photoreceptors.

P Cell

Small parvocellular (midget) cell.

Parasol Cell

Large cell with large receptive field.

Pedicle

Synaptic terminal of a cone.

Photoisomerization

Light-induced conformation change of 11-cis retinal to all-trans retinal.

Photopic Vision

Cone vision under bright light conditions (daylight).

Photopsin

Photopigment of a cone composed of iodopsin and retinal.

Phototransduction

Transduction of light energy into neuronal activity.

Plexiform Layer

Synaptic layer.

Purkinje Shift

Shift of the retinal sensitivity from yellow toward blue during adaptation to darkness (mesopic vision).

Receptive Field

Area of the retina where light stimuli alter the activity of a cell.

Retinoid Cycle

Metabolic cycle which regenerates 11-cis retinal from all-trans retinal.

Rhabdomeric Photoreceptor

Invertebrate-type photoreceptor which contains photopigments in the membranes of microvilli.

Rhodopsin

Photopigment of rods composed of scotopsin and retinal.

Ribbon

Presynaptic dense body binds glutamate-containing synaptic vesicles.

Rod

Rodlike photoreceptor responsible for achromatic vision under low light conditions.

Scotopic Vision

Rod vision at low light intensities (night vision).

Spherule

Synaptic terminal of a rod.

Starburst Amacrine

Amacrine cell with large dendritic field which is implicated in movement detection.

Stratified Cell

Cell with processes that branch in a distinct sublayer of the IPL.

Subretinal Space

Fluid-filled space between the neuroretina and RPE.

Transducin

G-protein involved in the phototransduction cascade.

Triad

A ribbon-containing structure of the cone pedicle.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this entry

Cite this entry

Reichenbach, A., Bringmann, A. (2013). Retina: Neuroanatomy and Physiology. In: Pfaff, D.W. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1997-6_22

Download citation

Publish with us

Policies and ethics

Navigation