Long Term Outcome of Total Knee Arthroplasty. The Effect of Navigation

  • Chapter
Total Knee Arthroplasty

Abstract

Total knee arthroplasty (TKA) is an effective procedure which relieves pain, restores knee function, and improves the quality of life of patients with end stage knee arthritis [1–6]. Further improvement of its results seems difficult. Ten year survival rates are reported to be higher than 90 % in large patient series and registers [7]. Total knee arthroplasty outcomes are highly dependent on surgical technique, specifically limb alignment, and implant positioning. Proper alignment of the femoral and tibial components is an important predictor of postoperative pain, polyethylene liner wear, stability, and implant longevity [8–11]. Implant malposition is also associated with postoperative pain, decreased function and/or higher revision rates. More than 50 % of TKA revisions are performed within 2 years after surgery and a common reason is component malposition [12]. In addition, when TKA is performed in lower volume hospitals (hospital volume of 25–50 TKAs/year), a higher TKA revision rate at 5–8 years has been reported. Numerous studies have demonstrated that poor clinical outcomes and decreased implant longevity in TKA are often associated with inaccurate placement of either the tibial or the femoral implant [9, 13–18]. Choong et al. [19] found that more accurate component placement correlates with better knee function and improved quality of life. Some investigators have reported that even in major arthroplasty centers, optimal postoperative alignment of the components can only be obtained in 70–80 % of patients using conventional techniques with either intra or extramedullary alignment rods. Computer assisted navigation techniques, including image based and image free systems, have been recently developed and used in order to improve the positioning of the components and the axis of the limb in TKAs performed for both deformed and normally aligned knees [20–25]. Effective soft tissue balancing is also a determinant of TKA long term outcome [15, 26]. Common reason for TKA failure is patella component or extensor mechanism failure in combination with femoral and tibial components, alignment failure [18, 27, 28]. In cases with extraarticular femoral deformities, it is difficult to perform distal femoral cuts using intramedullary alignment rods and instrumentation for extramedullary alignment is not reliable in the coronal and sagittal planes. Instead, computer assisted navigation can help surgeons to perform TKA in such difficult cases [29].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 97.36
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lombardi AV, Berend KR, Walter CA, Aziz-Jacobo J, Cheney NA. Is recovery faster for mobile-bearing unicompartmental than total knee arthroplasty? Clin Orthop. 2009;467:1450–7.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Horwitz MD, Awan S, Chatoo MB, Stott DJ, Powles DP. An 8- to 10-year review of the Rotaglide total knee replacement. Int Orthop. 2009;33:111–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Parsch D, Krόger M, Moser MT, Geiger F. Follow-up of 11–16 years after modular fixed-bearing TKA. Int Orthop. 2009;33:431–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ang DC, Tahir N, Hanif H, Tong Y, Ibrahim SA. African Americans and Whites are equally appropriate to be considered for total joint arthroplasty. J Rheumatol. 2009;36:1971–6.

    Article  PubMed  Google Scholar 

  5. Kashyap SN, Van Ommeren JW, Shankar S. Minimally invasive surgical technique in total knee arthroplasty: a learning curve. Surg Innov. 2009;16:55–62.

    Article  PubMed  Google Scholar 

  6. Erak S, Rajgopal V, Macdonald SJ, McCalden RW, Bourne RB. Ten-year results of an inset biconvex patella prosthesis in primary knee arthroplasty. Clin Orthop. 2009;467:1781–92.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Pradhan NR, Gambhir A, Porter ML. Survivorship analysis of 3234 primary knee arthroplasties implanted over a 26-year period: a study of eight different implant designs. Knee. 2006;13:7–11.

    Article  CAS  PubMed  Google Scholar 

  8. Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res. 1998;356:144–53.

    Article  PubMed  Google Scholar 

  9. Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg Br. 1991;73B:709–14.

    Google Scholar 

  10. Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop. 1994;299:31–43.

    PubMed  Google Scholar 

  11. Czurda T, Fennema P, Baumgartner M, Ritschl P. The association between component malalignment and postoperative pain following navigation-assisted total knee arthroplasty: results of a cohort/nested case-control study. Knee Surg Sports Traumatol Arthrosc. 2010;18:863–9.

    Article  PubMed  Google Scholar 

  12. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM. Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop. 2002;307:13–6.

    Google Scholar 

  13. Fang DM, Ritter MA, Davis KE. Coronal alignment in total knee arthroplasty: just how important is it? J Arthroplasty. 2009;24:39.

    Article  PubMed  Google Scholar 

  14. Lotke PA, Ecker ML. Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg Am. 1977;59A:77.

    Google Scholar 

  15. Longstaff LM, Sloan K, Stamp N, et al. Good alignment after total knee arthroplasty leads to faster rehabilitation and better function. J Arthroplasty. 2009;24:570.

    Article  PubMed  Google Scholar 

  16. Bargren JH, Blaha JD, Freeman MA. Alignment in total knee arthroplasty. Correlated biomechanical and clinical observations. Clin Orthop. 1983;287:173–8.

    Google Scholar 

  17. Tew M, Waugh W. Tibiofemoral alignment and the results of knee replacement. J Bone Joint Surg Br. 1985;67B:551.

    Google Scholar 

  18. Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop. 1988;226:49–64.

    PubMed  Google Scholar 

  19. Choong PF, Dowsey MM, Stoney JD. Does accurate anatomical alignment result in better function and quality of life? Comparing conventional and computer-assisted total knee arthroplasty. J Arthroplasty. 2009;24:560.

    Article  PubMed  Google Scholar 

  20. Hernαndez-Vaquero D, Suarez-Vazquez A, Sandoval-Garcia MA, Noriega-Fernandez A. Computer assistance increases precision of component placement in total knee arthroplasty with articular deformity. Clin Orthop. 2010;468:1237–41.

    Article  Google Scholar 

  21. Stiehl JB. Comparison of tibial rotation in fixed and mobile bearing total knee arthroplasty using computer navigation. Int Orthop. 2009;33:679–85.

    Article  PubMed Central  PubMed  Google Scholar 

  22. van Strien T, van der Linden-van der Zwaag E, Kaptein B, van Erkel A, Valstar E, Nelissen R. Computer assisted versus conventional cemented total knee prostheses alignment accuracy and micromotion of the tibial component. Int Orthop. 2009;33:1255–61.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Dattani R, Patnaik S, Kantak A, Tselentakis G. Navigation knee replacement. Int Orthop. 2009;33:7–10.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kamat YD, Aurakzai KM, Adhikari AR, Matthews D, Kalairajah Y, Field RE. Does computer navigation in total knee arthroplasty improve patient outcome at midterm follow- up? Int Orthop. 2009;33:1567–70.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Minoda Y, Kobayashi A, Iwaki H, Ohashi H, Takaoka K. TKA sagittal alignment with navigation systems and conventional techniques vary only a few degrees. Clin Orthop. 2009;467:1000–6.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kim KK, Heo YM, Won YY, Lee WS. Navigation-assisted total knee arthroplasty for the knee retaining femoral intramedullary nail, and distal femoral plate and screws. Clin Orthop Surg. 2011;3:77–80.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Engh GA, Dwyer KA, Hanes CK. Polyethylene wear of metal-backed tibial components in total and unicompartmental knee prostheses. J Bone Joint Surg Br. 1992;74B:9–17.

    Google Scholar 

  28. Kilgus DJ, Moreland JR, Finerman GA, Funahashi TT, Tipton JS. Catastrophic wear of tibial polyethylene inserts. Clin Orthop. 1991;273:223–31.

    PubMed  Google Scholar 

  29. Shao J, Zhang W, Jiang Y. Computer-navigated TKA for the treatment of osteoarthritis associated with extra-articular femoral deformity. Orthopedics. 2012;35:794–9.

    Article  Google Scholar 

  30. Delp SL, Stulberg SD, Davies B, Picard F, Leitner F. Computer assisted knee replacement. Clin Orthop. 1998;354:49–56.

    Article  PubMed  Google Scholar 

  31. Bottros J, Klika AK, Lee HH, Polousky J, Barsoum WK. The use of navigation in total knee arthroplasty for patients with extra-articular deformity. J Arthroplasty. 2008;23:74–8.

    Article  PubMed  Google Scholar 

  32. Australian Orthopaedic Association National Joint Replacement Registry. Computer assisted surgery in primary total knee replacement between 2006 and 2008. Adelaide: Australia AOA NJRR; 2010.

    Google Scholar 

  33. Graham DJ, Harvie P, Sloan K, Beaver RJ. Morbidity of navigated vs conventional total knee arthroplasty: a retrospective review of 327 cases. J Arthroplasty. 2011;26:1224–7.

    Article  PubMed  Google Scholar 

  34. Molli RG, Anderson KC, Buehler KC, et al. Computer-assisted navigation software advancements improve the accuracy of total knee arthroplasty. J Arthroplasty. 2011;26:432–8.

    Article  PubMed  Google Scholar 

  35. Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty. 2007;22:1097.

    Article  PubMed  Google Scholar 

  36. Brin YS, Nikolaou VS, Joseph L, et al. Imageless computer assisted versus conventional total knee replacement. A Bayesian meta-analysis of 23 comparative studies. Int Orthop. 2011;35:331–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Nikou C, Di Gioia A, Blackwell M, Jaramaz B, Kanade T. Augmented reality imaging technology for orthopaedic surgery. Oper Tech Orthop. 2000;10:82–6.

    Article  Google Scholar 

  38. Picard F, Moody J, Jaramaz B, Di Gioia A, Nikou C, La Barca RS. A classification proposal for computer-assisted knee systems. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention- MICCAI. 2000. p. 1145–51.

    Google Scholar 

  39. Woodard EJ, Leon SP, Moriarty TM, Quinones A, Zamani AA, Jolesz FA. Initial experience with intraoperative magnetic resonance imaging in spine surgery. Spine. 2001;26:410–7.

    Article  CAS  PubMed  Google Scholar 

  40. Tao C, Gouyou Z, **anlong Z. Clinical and radiographic outcomes of image-based computer-assisted total knee arthroplasty: an evidence-based evaluation. Surg Innov. 2011;18:15–20.

    Article  Google Scholar 

  41. Klos TVS, Banks AZ, Banks SA, Cook FF. Computer assisted anterior cruciate ligament reconstruction. In: Nolte LP, Ganz R, editors. Computer assisted orthopaedic surgery CAOS. Gottingen: Hogrefe & Huber; 1998. p. 184–9.

    Google Scholar 

  42. Jerosch J, Peuker E, Philipps B, Filler T. Interindividual reproducibility in perioperative rotational alignment of femoral components in knee prosthetic surgery using the transepicondylar axis. Knee Surg Sports Traumatol Arthrosc. 2002;10:194–7.

    Article  CAS  PubMed  Google Scholar 

  43. van der Linden-van der Zwaag HM, van der Zwaag HM, Valstar ER, van der Molen AJ, Nelissen RG. Transepicondylar axis accuracy in computer assisted knee surgery: a comparison of the CT-based measured axis versus the CAS determined axis. Comput Aided Surg. 2008;13:200–6.

    Article  PubMed  Google Scholar 

  44. Anderson KC, Buehler KC, Markel DC. Computer assisted navigation in total knee arthroplasty: comparison with conventional methods. J Arthroplasty. 2005;20:132–8.

    Article  PubMed  Google Scholar 

  45. Bathis H, Shafizadeh S, Paffrath T, Simanski C, et al. Are computer assisted total knee replacements more accurately placed? A meta-analysis of comparative studies. Orthopade. 2006;35:1056–65.

    Article  CAS  PubMed  Google Scholar 

  46. Bauwens K, Matthes G, Wich M, Gebhard F, et al. Navigated total knee replacement. A meta-analysis. J Bone Joint Surg Am. 2007;89A:261–9.

    Article  Google Scholar 

  47. Bertsch C, Holz U, Konrad G, Vakili A, et al. Early clinical outcome after navigated total knee arthroplasty. Comparison with conventional implantation in TKA: a controlled and prospective analysis. Orthopade. 2007;36:739–45.

    Article  CAS  PubMed  Google Scholar 

  48. Bolognesi M, Hofmann A. Computer navigation versus standard instrumentation for tka: a single-surgeon experience. Clin Orthop Relat Res. 2005;440:162–9.

    Article  PubMed  Google Scholar 

  49. Chauhan SK, Scott RG, Breidahl W, Beaver RJ. Computer- assisted knee arthroplasty versus a conventional jig-based technique. A randomised, prospective trial. J Bone Joint Surg Br. 2004;86B:372–7.

    Article  Google Scholar 

  50. Chin PL, Yang KY, Yeo SJ, Lo NN. Randomized control trial comparing radiographic total knee arthroplasty implant placement using computer navigation versus conventional technique. J Arthroplasty. 2005;20:618–26.

    Article  PubMed  Google Scholar 

  51. Decking R, Markmann Y, Fuchs J, Puhl W, et al. Leg axis after computer-navigated total knee arthroplasty: a prospective randomized trial comparing computer-navigated and manual implantation. J Arthroplasty. 2005;20:282–8.

    Article  PubMed  Google Scholar 

  52. Decking R, Markmann Y, Mattes T, Puhl W, et al. On the outcome of computer-assisted total knee replacement. Acta Chir Orthop Traumatol Cech. 2007;74:171–4.

    CAS  PubMed  Google Scholar 

  53. Dutton AQ, Yeo SJ, Yang KY, Lo NN, et al. Computer-assisted minimally invasive total knee arthroplasty compared with standard total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg Am. 2009;90A:2–9.

    Google Scholar 

  54. Ensini A, Catani F, Leardini A, Romagnoli M, et al. Alignments and clinical results in conventional and navigated total knee arthroplasty. Clin Orthop. 2007;457:156–62.

    CAS  PubMed  Google Scholar 

  55. Haaker RG, Stockheim M, Kamp M, Proff G, et al. Computer-assisted navigation increases precision of component placement in total knee arthroplasty. Clin Orthop. 2005;433:152–9.

    Article  PubMed  Google Scholar 

  56. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.

    Google Scholar 

  57. Gøthesen O, Espehaug B, Havelin LI, Petursson G, Hallan G, Strøm E, Dyrhovden G, Furnes O. Functional outcome and alignment in computer-assisted and conventionally operated total knee replacements: a multicentre parallel-group randomised controlled trial. Bone Joint J. 2014;96B:609–18.

    Article  Google Scholar 

  58. Kim SJ, MacDonald M, Hernandez J, Wixson RL. Computer assisted navigation in total knee arthroplasty: improved coronal alignment. J Arthroplasty. 2005;20(S3):123–31.

    Article  PubMed  Google Scholar 

  59. Molfetta L, Caldo D. Computer navigation versus conventional implantation for varus knee total arthroplasty: a case-control study at 5 years follow-up. Knee. 2008;15:75–9.

    Article  PubMed  Google Scholar 

  60. Picard F, Deakin AH, Clarke JV, Dillon JM, et al. Using navigation intraoperative measurements narrows range of outcomes in TKA. Clin Orthop. 2007;463:50–7.

    PubMed  Google Scholar 

  61. Seon JK, Park SJ, Lee KB, Li G, et al. Functional comparison of total knee arthroplasty performed with and without a navigation system. Int Orthop. 2009;33(4):987–90.

    Google Scholar 

  62. Song EK, Seon JK, Yoon TR, Park SJ, et al. Functional results of navigated minimally invasive and conventional total knee arthroplasty: a comparison in bilateral cases. Orthopedics. 2006;29(S10):S145–7.

    PubMed  Google Scholar 

  63. Sparmann M, Wolke B, Czupalla H, Banzer D, et al. Positioning of total knee arthroplasty with and without navigation support. A prospective, randomised study. J Bone Joint Surg Br. 2003;85B:830–5.

    Google Scholar 

  64. Spencer JM, Chauhan SK, Sloan K, Taylor A, et al. Computer navigation versus conventional total knee replacement: no difference in functional results at 2 years. J Bone Joint Surg Br. 2007;89B:477–80.

    Article  Google Scholar 

  65. Stockl B, Nogler M, Rosiek R, Fischer M, et al. Navigation improves accuracy of rotational alignment in total knee arthroplasty. Clin Orthop. 2004;426:180–6.

    Article  PubMed  Google Scholar 

  66. Stulberg B, Zadzilka J. Navigation matters: initial experience with navigation for bilateral total knee arthroplasty. Tech Knee Surg. 2008;7:166–71.

    Article  Google Scholar 

  67. Victor J, Hoste D. Image-based computer-assisted total knee arthroplasty leads to lower variability in coronal alignment. Clin Orthop. 2004;428:131–9.

    Article  PubMed  Google Scholar 

  68. Stulberg S, Loan P, Sarin V. Computer-assisted navigation in total knee replacement: results of an initial experience in thirty-five patients. J Bone Joint Surg Am. 2002;84A:90–8.

    Google Scholar 

  69. Stephen R, Burnett J, Barrack RL. Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review. Clin Orthop. 2013;471:264–76.

    Article  Google Scholar 

  70. Matziolis G, Krocher D, Weiss U, Tohtz S, Perka C. A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. J Bone Joint Surg Am. 2007;89A:236–43.

    Article  Google Scholar 

  71. Ishida K, Matsumoto T, Tsumura N, Kubo S, Kitagawa A, Chin T, et al. Mid-term outcomes of computer-assisted total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2011;19:1107–12.

    Article  PubMed  Google Scholar 

  72. Bathis H, Perlick L, Tingart M, Luring C, Zurakowski D, Grifka J. Alignment in total knee arthroplasty. A comparison of computer- assisted surgery with the conventional technique. J Bone Joint Surg Br. 2004;86B:682–7.

    Article  Google Scholar 

  73. Kim YH, Kim JS, Hong KS, Kim YJ, Kim JH. Prevalence of fat embolism after total knee arthroplasty performed with or without computer navigation. J Bone Joint Surg Am. 2008;90A:1238.

    Google Scholar 

  74. Church JS, Scadden JE, Gupta RR, Cokis C, et al. Embolic phenomena during computer-assisted and conventional total knee replacement. J Bone Joint Surg Br. 2007;89B:481–5.

    Article  Google Scholar 

  75. Hiscox CM, Bohm ER, Turgeon TR, Hedden DR, Burnell CD. Randomized trial of computer-assisted knee arthroplasty: impact on clinical and radiographic outcomes. J Arthroplasty. 2011;26:125964.

    Article  Google Scholar 

  76. Cerha O, Kirschner S, Gunther KP, Lu¨tzner J. Cost analysis for navigation in knee endoprosthetics. Orthopade. 2009;38:1235–40.

    Article  CAS  PubMed  Google Scholar 

  77. Slover JD, Tosteson AN, Bozic KJ, Rubash HE, Malchau H. Impact of hospital volume on the economic value of computer navigation for total knee replacement. J Bone Joint Surg Am. 2008;90A:1492–500.

    Article  Google Scholar 

  78. NIH Consensus Statement on total knee replacement. J Bone Joint Surg Am. 2004;86A:1328–35.

    Google Scholar 

  79. Rasanen P, Paavolainen P, Sintonen H, Koivisto AM, Blom M, Ryynanen OP, Roine RP. Effectiveness of hip or knee replacement surgery in terms of quality-adjusted life years and costs. Acta Orthop Scand. 2007;78:108–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theofilos Karachalios MD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Zimbis, A., Karachalios, T. (2015). Long Term Outcome of Total Knee Arthroplasty. The Effect of Navigation. In: Karachalios, T. (eds) Total Knee Arthroplasty. Springer, London. https://doi.org/10.1007/978-1-4471-6660-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6660-3_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6659-7

  • Online ISBN: 978-1-4471-6660-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation