Routing in Transportation Networks

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 42 Accesses

Abstract

Routing is an effective way to control traffic to optimize network-level objective. The effectiveness depends in part on complex traffic flow dynamics and driver preferences. We provide an overview of the basics of routing design under such considerations and point to promising research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The density is assumed to be uniform over an edge. We also assume, without loss of generality, that all the edges have unit length.

  2. 2.

    For brevity in notation, we use the same notation f to denote a specific flow vector as well as the function which maps density x to outflow. The specific usage should be clear from the context.

Bibliography

  • Ba Q, Savla K (2016) On distributed computation of optimal control of traffic flow over networks. In: Allerton conference on communication, control and computing, pp 1102–1109

    Google Scholar 

  • Cascetta E (2009) Transportation systems analysis. Springer

    Book  Google Scholar 

  • Como G, Savla K, Acemoglu D, Dahleh MA, Frazzoli E (2013a) Robust distributed routing in dynamical networks – part I: locally responsive policies and weak resilience. IEEE Trans Autom Control 58(2):317–332

    Article  MathSciNet  Google Scholar 

  • Como G, Savla K, Acemoglu D, Dahleh MA, Frazzoli E (2013b) Robust distributed routing in dynamical networks – part II: strong resilience, equilibrium selection and cascaded failures. IEEE Trans Autom Control 58(2):333–348

    Article  MathSciNet  Google Scholar 

  • Como G, Savla K, Acemoglu D, Dahleh MA, Frazzoli E (2013c) Stability analysis of transportation networks with multiscale driver decisions. SIAM J Control Optim 51(1):230–252

    Article  MathSciNet  Google Scholar 

  • Como G, Lovisari E, Savla K (2015) Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing. IEEE Trans Control Netw Syst 2(1):57–67

    Article  MathSciNet  Google Scholar 

  • Como G, Lovisari E, Savla K (2016) Convexity and robustness of dynamic traffic assignment for control of freeway networks. Transp Res B Methodol 91:446–465

    Article  Google Scholar 

  • Daganzo CF (1995) The cell transmission model, part II: network traffic, Transp Res B Methodol 29(2):79–93

    Article  Google Scholar 

  • Hirsch M, Smith H (2006) Monotone dynamical systems, vol. 2 of Handbook of differential equations: ordinary differential equations, chapter 4, pp 239–357. North-Holland

    MATH  Google Scholar 

  • Hosseini P, Savla K (2017) Queue length simulation for signalized arterial networks and steady state computation under fixed time control. Available at https://arxiv.org/abs/1705.07493

  • Jafari S, Savla K (2019) On structural properties of optimal feedback control for traffic networks. In: American control conference, Philadelphia

    MATH  Google Scholar 

  • Lovisari E, Como G, Rantzer A, Savla K (2014) Stability analysis and control synthesis for dynamical transportation networks. Available at http://arxiv.org/abs/1410.5956

  • Massoulié L (2007) Structural properties of proportional fairness: stability and insensitivity. Ann Appl Probab 17:809–839

    Article  MathSciNet  Google Scholar 

  • Muralidharan A, Pedarsani R, Varaiya P (2015) Analysis of fixed-time control. Transp Res B Methodol 73: 81–90

    Article  Google Scholar 

  • Nisan N, Roughgarden T, Tardos E, Vazirani V (eds) (2007) Algorithmic game theory. Cambridge University Press

    Google Scholar 

  • Patriksson M (1994) The traffic assignment problem: models and methods. V.S.P. Intl Science

    MATH  Google Scholar 

  • Savla K, Lovisari E, Como G (2013) On maximally stabilizing adaptive traffic signal control. In: Allerton conference on communication, control and computing, Monticello, pp 464–471

    Google Scholar 

  • Savla K, Como G, Dahleh MA (2014) Robust network routing under cascading failures. IEEE Trans Netw Sci Eng 1(1):53–66

    Article  MathSciNet  Google Scholar 

  • Sontag ED (2010) Contractive systems with inputs. In: Perspectives in mathematical system theory, control, and signal processing, pp 217–228. Springer

    Google Scholar 

  • Tassiulas L, Ephremides A (1992) Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans Autom Control 37(12):1936–1948

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketan Savla .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Savla, K. (2020). Routing in Transportation Networks. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_100144-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_100144-1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation