Quantum Dots as Biomarker

  • Chapter
  • First Online:
Nanomaterials: A Danger or a Promise?

Abstract

Quantum dots (QDs) are semiconductor nanocrystals with unique optical and electronic properties. They have distinct advantages over traditional fluorescent organic dyes in chemical and biological studies in terms of tunable emission spectra, signal brightness, photostability, and can be conjugated to a wide range of biological targets, including proteins, antibodies, and nucleic acid probes. Currently, the major type of QDs is the heavy metal containing II-VI, IV–IV, or III-V QDs. The new generations of QDs, have far-reaching potential for the study of intracellular processes at the single-molecule level, high resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics. However, with respect to medical applications, caution must be exercised with QDs due to their toxic components. Development of suitable health and safety regulations is necessary for commercialization. Despite of these difficulties, QDs appear to be too valuable to nanomedecine to dismiss, and will eventually come essential into practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos P (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013

    Google Scholar 

  2. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  Google Scholar 

  3. Medintz IL, Mattousi H, Clapp AR (2008) Potential clinical applications of quantum dots. Int J Nanomed 3(2):151–161

    Google Scholar 

  4. Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  Google Scholar 

  5. Manninen SM, Reimann M (2002) Electronic structure of quantum dots. Rev Mod Phys 74:1283–1342

    Article  Google Scholar 

  6. Gokarna A, ** LH, Hwang JS, Cho YH, Lim YT, Chung BH et al (2008) Quantum dot-based protein micro- and nanoarrays for detection of prostate cancer biomarkers. Proteomics 8:1809–18

    Article  Google Scholar 

  7. Marchal F, Pic E, Pons T, Dubertret B, Bolotine L, Guillemin F (2008) Quantum dots in oncological surgery: the future for surgical margin status? Bull Cancer 95:1149–1153

    Google Scholar 

  8. Weng KC, Noble CO, Papahadjopoulos-Sternberg B et al (2008) Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett 8:2851

    Article  Google Scholar 

  9. Zhou I, Ghosh M (2007) Quantum dots and peptides: a bright future together. Biopolymers 88:325–339

    Article  Google Scholar 

  10. Zhang CY, Yeh HC, Kuroki MT et al (2005) Single-quantumdot-based DNA nanosensor. Nat Mater 4:826

    Article  Google Scholar 

  11. Medintz IL, Clapp AR, Mattoussi H et al (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630

    Article  Google Scholar 

  12. Bagalkot V, Zhang L, Levy-Nissenbaum E et al (2007) Quantum dot—aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett 7:3065

    Article  Google Scholar 

  13. Cheng AK, Su H, Wang YA, Yu HZ (2009) Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal Chem 81:6130–6139

    Article  Google Scholar 

  14. Boeneman K, Mei BC, Dennis AM et al (2009) Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. J Am Chem Soc 131:3828

    Article  Google Scholar 

  15. Dabbousi BO, RodriguezViejo J, Mikulec FV et al (1997) (CdSe) ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463

    Article  Google Scholar 

  16. Erogbogbo F, Yong KT, Roy I, Xu GX, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2:873–878

    Article  Google Scholar 

  17. Ben-Ari ET (2003) Nanoscale quantum dots hold promise for cancer applications. J Natl Cancer Inst 95(7):502–504

    Article  Google Scholar 

  18. Hezinger AFE, Tessmar J, Gopferich A (2008) Polymer coating of quantum dots—a powerful tool toward diagnostics and sensorics. Eur J Pharm Biopharm 68:138–152

    Article  Google Scholar 

  19. Yong KT, Roy I, Swihart MT, Prasad PN (2009) Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J Mater Chem 19(27):4655–4672

    Article  Google Scholar 

  20. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762

    Article  Google Scholar 

  21. Smith AM, Dave S, Nie S, True L, Gao X (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6:231–244

    Article  Google Scholar 

  22. Zhang H, Yee D, Wang C (2008) Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine 3(1):83–91

    Article  Google Scholar 

  23. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    Article  Google Scholar 

  24. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  Google Scholar 

  25. Azzazy HM, Mansour MM, Kazmierczak SC (2007) From diagnostics to therapy: prospects of quantum dots. Clin Biochem 40:917–927

    Article  Google Scholar 

  26. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  Google Scholar 

  27. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  Google Scholar 

  28. Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    Article  Google Scholar 

  29. Clarke SJ, Hollmann CA, Zhang Z, Suffern D, Bradforth SE, Dimitrijevic NM et al (2006) Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater 5:409–417

    Article  Google Scholar 

  30. Hsieh SC, Wang FF, Hung SC, Chen Y, Wang YJ (2006) The internalized CdSe/ZnS quantum dots impair the chondrogenesis of bone marrow mesenchymal stem cells. J Biomed Mater Res Part B-Appl Biomater 79B:95–101

    Article  Google Scholar 

  31. Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385

    Article  Google Scholar 

  32. Chen FQ, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4:1827–1832

    Article  Google Scholar 

  33. Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48:669–675

    Google Scholar 

  34. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  35. Zhang TT, Stilwell JL, Gerion D, Ding LH, Elboudwarej O, Cooke PA et al (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics mea-surements. Nano Lett 6:800–808

    Article  Google Scholar 

  36. Mansson A, Sundberg M, Balaz M, Bunk R, Nicholls IA, Omling P et al (2004) In vitro sliding of actin filaments labelled with single quantum dots. Biochem Biophys Res Commun 314:529–534

    Article  Google Scholar 

  37. Rzigalinski BA, Strobl JS (2009) Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol 238:280–288

    Article  Google Scholar 

  38. Pelley JL, Daar AS, Saner MA (2009) State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol Sci 112:276–296

    Article  Google Scholar 

  39. Selvan ST, Tan TT, Ying JY (2005) Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater 17:1620–1625

    Article  Google Scholar 

  40. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  Google Scholar 

  41. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Investig Dermatol 127:143–153

    Article  Google Scholar 

  42. Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127:11364–11371

    Article  Google Scholar 

  43. ** Y, Gao X (2009) Plasmonic fluorescent quantum dots. Nat Nanotechnol 4:571–576

    Article  Google Scholar 

  44. Yong KT, Qian J, Roy I, Lee HH, Bergey EJ, Tramposch KM et al (2007) Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells. Nano Lett 7:761–765

    Article  Google Scholar 

  45. Soman CP, Giorgio TD (2008) Quantum dot self-assembly for protein detection with sub picomolar sensitivity. Langmuir 24:4399–4404

    Article  Google Scholar 

  46. Liu A, Peng S, Soo JC, Kuang M, Chen P, Duan H (2011) Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. Anal Chem 83(3):1124–1130

    Article  Google Scholar 

  47. Gao XH, Cui YY, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969

    Article  Google Scholar 

  48. Voura E, Jaiswal J, Mattoussi H et al (2004) Tracking metastatic tumor cell extra-vasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998

    Article  Google Scholar 

  49. Cai W, Rao J, Gambhir SS, Chen X (2006) How molecular imaging is speeding up anti-angiogenic drug development. Mol Cancer Ther 5:2624–2633

    Article  Google Scholar 

  50. Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D et al (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11:678–682

    Article  Google Scholar 

  51. Li Z, Wang K, Tan W, Li J, Fu Z, Ma C et al (2006) Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution. Anal Biochem 354:169–174

    Article  Google Scholar 

  52. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  Google Scholar 

  53. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99:12617–12621

    Article  Google Scholar 

  54. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    Article  Google Scholar 

  55. Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166

    Article  Google Scholar 

  56. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2:50–64

    Article  Google Scholar 

  57. Smith JD, Fisher GW, Waggoner AS, Campbell PG (2007) The use of quantum dots for analysis of chick CAM vasculature. Microvasc Res 73:75–83

    Article  Google Scholar 

  58. Jayagopal A, Russ PK, Haselton FR (2007) Surface engineering of quantum dots for in vivo vascular imaging. Bioconjug Chem 18:1424–1433

    Article  Google Scholar 

  59. Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CA, Urano Y, Choyke PL (2007) Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett jun 7(6):1711–1716

    Article  Google Scholar 

  60. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node map**. Nat Biotechnol 22:93–97

    Article  Google Scholar 

  61. Pic E, Pons T, Bezdetnaya L, Leroux A, Guillemin F, Dubertret B, Marchal F (2010) Fluorescence imaging and whole-body biodistribution of near-infrared-emitting quantum dots after subcutaneous injection for regional lymph node map** in mice. Mol Imaging Biol 12:394–405

    Article  Google Scholar 

  62. Cassette E, Pons T, Bouet C et al (2010) Synthesis and characterization of near-infrared Cu-In-Se/ZnS core/shell quantum dots for in vivo imaging. Chem Mater 22(22):6117–6124

    Article  Google Scholar 

  63. Cheon J, Lee J-H (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnolgy. Acc Chem Res 41:1630–1640

    Article  Google Scholar 

  64. Jennings LE, Long NJ (2009) Two is better than one’s probes for dual-modality molecular imaging. Chem Commun pp 3511–3524

    Google Scholar 

  65. Park JH, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed Engl 47:7284–7288

    Article  Google Scholar 

  66. Weng KC, Noble CO, Papahadjopoulos-Sternberg B et al (2008) Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett 8:2851

    Article  Google Scholar 

  67. Smith BR, Cheng Z, De A et al (2008) Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett 8:2599

    Article  Google Scholar 

  68. Choi HS, Liu W, Liu F et al (2010) Design considerations for tumour-targeted nanoparticles. Nat Nano 5:42

    Article  Google Scholar 

  69. Jokerst JV, Raamanathan A, Christodoulides N, Floriano PN, Pollard AA, Simmons GW et al (2009) Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens Bioelectron 24:3622–9

    Article  Google Scholar 

  70. Wang J, Liu G, Wu H et al (2008) Quantum-dot-based electrochemical immunoassay for high-throughput screening of the prostate-specific antigen. Small 4:82

    Article  Google Scholar 

  71. Hamula CLA, Guthrie JW, Zhang H et al (2006) Selection and analytical applications of aptamers. Trends Anal Chem 25(7):681–691

    Article  Google Scholar 

  72. Medintz IL, Clapp AR, Brunel FM et al (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5:581–589

    Article  Google Scholar 

  73. Snyder EL, Bailey D, Shipitsin M, Polyak K, Loda M (2009) Identification of CD44v6(+)/CD24? breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest 89:857–66

    Article  Google Scholar 

  74. Zdobnova TA, Dorofeev SG, Tananaev PN, Zlomanov VP, Stremovskiy OA, Lebedenko EN, Balalaeva IV, Deyev SM, Petrov RV (2005) Imaging of human ovarian cancer SKOV-3 cells. Dokl Biochem Biophys 430(1):41–44

    Article  Google Scholar 

  75. Song EQ, Zhang ZL, Luo QY, Lu W, Shi YB, Pang DW (2009) Tumor cell targeting using folate-conjugated fluorescent quantum dots and recep-tor-mediated endocytosis. Clin Chem 955–963

    Google Scholar 

  76. Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A (2007) Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticle. J Controlled Release 124:28–34

    Article  Google Scholar 

  77. Barat B, Sirk SJ, McCabe KE, Li J, Lepin EJ, Remenyi R et al (2009) Cys-diabody quantum dot conjugates (ImmunoQdots) for cancer marker detection. Bioconjug Chem 20:1474–1481

    Article  Google Scholar 

  78. Hu M, Yan J, He Y, Lu H, Weng L, Song S et al (2010) Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 4:488–494

    Article  Google Scholar 

  79. Ko MH, Kim S, Kang WJ, Lee JH, Kang H, Moon SH et al (2009) In vitro derby imaging of cancer biomarkers using quantum dots. Small 5:1207–1212

    Google Scholar 

  80. Yu X, Chen L, Li K, Li Y, **ao S, Luo X et al (2007) Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomed Opt 12:14008

    Article  Google Scholar 

  81. Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y (2010) Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem 82:7008–7014

    Article  Google Scholar 

  82. Gokarna A, ** LH, Hwang JS, Cho YH, Lim YT, Chung BH et al (2008) Quantum dot-based protein micro- and nanoarrays for detection of prostate cancer biomarkers. Proteomics 8:1809–1818

    Article  Google Scholar 

  83. Zajac A, Song D, Qian W, Zhukov T (2007) Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B 58:309–314

    Article  Google Scholar 

  84. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Article  Google Scholar 

  85. Liu X-L, Peng C-W, Chen C, Yang X-Q, Ming-Bai H, **a H-S, Liu S-P, Pang D-W, Li Y (2011) Quantum dots-based double-color imaging of HER2 positive breast cancer invasion. Biochem Biophys Res Commun 409(3):577–582

    Article  Google Scholar 

  86. Yang M, Javadi A, Gong S (2011) Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sens Actuators B Chem 155(1):357–360

    Article  Google Scholar 

  87. Li-Shishido S, Watanabe TM, Tada H, Higuchi H, Ohuchi N (2006) Reduction in non fluorescence state of quantum dots on an immunofluorescence staining. Biochem Biophys Res Commun 351(1):7–13

    Article  Google Scholar 

  88. **ao Y, Gao X, Gannot G et al (2008) Quantitation of HER2 and telomerase biomarkers in solid tumors with IgY antibodies and nanocrystal detection. Int J Cancer 122(10):2178–2186

    Article  Google Scholar 

  89. Yezhelyev MV, Al-Hajj A, Morris C et al (2007) In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv Mater 19(20):3146–3151

    Article  Google Scholar 

  90. Liu J, Lau SK, Varma VA, Kairdolf BA, Nie S (2010) Multiplexed detection and characterization of rare tumor cells in Hodgkin’s lymphoma with multicolor quantum dots. Anal Chem 82:6237–6243

    Article  Google Scholar 

  91. **ng Y et al (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2:1152–1165

    Article  Google Scholar 

  92. Shi C, Zhou G, Zhu Y et al (2008) Quantum dots-based multiplexed immunohistochemistry of protein expression in human prostate cancer cells. Eur J Histochem 52(2):127–134

    Google Scholar 

  93. Gao X, Chung LWK, Nie S (2007) Quantum dots for in vivo molecular and cellular imaging. Methods Mol Biol 374:135–145

    Google Scholar 

  94. Wang Y, Dossey AM, Froude JW II et al (2008) PSA fluoroimmunoassays using anti-PSA ScFv and quantum-dot conjugates. Nanomedicine 3(4):475–483

    Article  Google Scholar 

  95. Qian J, Yong K-T, Roy I et al (2007) Imaging pancreatic cancer using surface-functionalized quantum dots. J Phys Chem B 111(25):6969–6972

    Article  Google Scholar 

  96. Yong KT, Ding H, Roy I et al (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3(3):502–510

    Article  Google Scholar 

  97. Yu X, Chen L, Li K et al (2007) Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomedical Opt 12(1):014008

    Article  Google Scholar 

  98. Chen L-D, Liu J, Yu X-F et al (2008) The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials 29(31):4170–4176

    Article  Google Scholar 

  99. Fu A, Gu W, Boussert B, Koski K, Gerion D, Manna L, et al (2007) Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Lett 7:179–182

    Article  Google Scholar 

  100. Vasudevanpillai B, Sathish M, Ramakrishnapillai VO, Abdulaziz A, Mitsuru I (2011) Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues. Biotechnol Adv 29(2):259–260

    Article  Google Scholar 

  101. Riegler J, Nann T (2004) Application of luminescent nanocrystals as labels for biological molecules. Anal Bioanal Chem 379:913–919

    Article  Google Scholar 

  102. Heyduk T (2002) Measuring protein conformational changes by FRET/LRET. Curr Opin Biotechnol 13:292–296

    Google Scholar 

  103. Day RN, Periasamy A, Schaufele F (2001) Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 25:4–18

    Article  Google Scholar 

  104. Li JJ, Bugg TDH (2004) A fluorescent analogue of UDP-N-acetylglucosamine: application for FRET assay of peptidoglycan translocase II (MurG). Chem Commun pp 182–183

    Google Scholar 

  105. Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76:1517–1520

    Article  Google Scholar 

  106. Willard DM, Carillo LL, Jung J, Van Orden A (2001) CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein–protein binding assay. Nano Lett 1:469–474

    Article  Google Scholar 

  107. Wang SP, Mamedova N, Kotov NA, Chen W, Studer J (2002) Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett 2:817–822

    Article  Google Scholar 

  108. Bailey VJ, Easwaran H, Zhang Y et al (2009) MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res 19:1455

    Article  Google Scholar 

  109. Kim Y, Oh Y, Oh E et al (2008) Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal Chem 80:4634

    Article  Google Scholar 

  110. **a Z, **ng Y, So M et al (2008) Multiplex detection of protease activity with quantum dot nanosensors prepared by inteinmediated specific bioconjugation. Anal Chem 80:8649

    Article  Google Scholar 

  111. So MK, Xu CJ, Loening AM, Gambhir SS, Rao JH (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343

    Article  Google Scholar 

  112. Chang E, Miller JS, Sun JT, Yu WW, Colvin VL, Drezek R et al (2005) Protease-activated quantum dot probes. Biochem Biophys Res Commun 334:1317–1321

    Article  Google Scholar 

  113. Xu CJ, **ng BG, Rao HH (2006) A self-assembled quantum dot probe for detecting beta-lactamase activity. Biochem Biophys Res Commun 344:931–935

    Article  Google Scholar 

  114. Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL et al (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5:581–589

    Article  Google Scholar 

  115. Shi LF, De Paoli V, Rosenzweig N, Rosenzweig Z (2006) Synthesis and application of quantum dots FRET-based protease sensors. J Am Chem Soc 103:10378–10379

    Article  Google Scholar 

  116. Messerli SM, Prabhakar S, Tang Y, Shah K, Cortes ML, Murthy V et al (2004) A novel method for imaging apoptosis using a caspase-1 nearinfrared fluorescent probe. Neoplasia 6:95–105

    Article  Google Scholar 

  117. Pham W, Choi YD, Weissleder R, Tung CH (2004) Develo** a peptidebased near-infrared molecular probe for protease sensing. Bioconjugate Chem 15:1403–1407

    Article  Google Scholar 

  118. Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci USA 96:151

    Article  Google Scholar 

  119. **a Z, Rao J (2009) Biosensing and imaging based on bioluminescence resonance energy transfer. Curr Opin Biotechnol 20:37

    Article  Google Scholar 

  120. Russ Algar W, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618

    Google Scholar 

  121. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    Article  Google Scholar 

  122. Yang RH, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC, Yeh TK, Yang CS, Lin P (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115:1339–1343

    Article  Google Scholar 

  123. Russ Algar W, Krull UJ (2010) New opportunities in multiplexed optical bioanalyses using quantum dots and donor-acceptor interactions. Anal Bioanal Chem 398:2439–2449

    Google Scholar 

  124. Mazumder S, Dey R, Mitra MK, Mukherjee S, Das GC (2009) Biofunctionalized quantum dots in biology and medicine. J Nanomater 1–17:815734–815741

    Google Scholar 

  125. Pradhan N, Battaglia DM, Liu YC, Peng XG (2007) Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett 7:312–317

    Article  Google Scholar 

  126. Pradhan N, Peng XG (2007) Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J Am Chem Soc 129:3339–3347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Boissiere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Boissiere, M. (2013). Quantum Dots as Biomarker. In: Brayner, R., Fiévet, F., Coradin, T. (eds) Nanomaterials: A Danger or a Promise?. Springer, London. https://doi.org/10.1007/978-1-4471-4213-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4213-3_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4212-6

  • Online ISBN: 978-1-4471-4213-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation