The Diversity of Bacteriophages in Hot Springs

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2738))

Abstract

Bacteriophages are ubiquitous in all environments that support microbial life. This includes hot springs, which can range in temperatures between 40 and 98 °C and pH levels between 1 and 9. Bacteriophages that survive in the higher temperatures of hot springs are known as thermophages. Thermophages have developed distinct adaptations allowing for thermostability in these extreme environments, including increased G + C DNA percentages, reliance upon the pentose phosphate metabolic pathway to avoid oxidative stress, and a codon preference for those with a GNA sequence leading to increased hydrophobic interactions and disulfide bonds. In this review, we discuss the diversity of characterized thermophages in hot spring environments that span five viral families: Myoviridae, Siphoviridae, Tectiviridae, Sphaerolipoviridae, and Inoviridae. Potential industrial and medicinal applications of thermophages will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breitbart M, Wegley L, Leeds S, Schoenfeld T, Rohwer F (2004) Phage community dynamics in hot springs. Appl Environ Microbiol 70(3):1633–1640. https://doi.org/10.1128/AEM.70.3.1633-1640.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zablocki O, van Zyl LJ, Kirby B, Trindade M (2017) Diversity of dsDNA viruses in a South African hot spring assessed by metagenomics and microscopy. Viruses 9(11):348. https://doi.org/10.3390/v9110348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Munson-McGee J, Rooney C, Young MJ (2020) An uncultivated virus infecting a nanoarchaeal parasite in the hot springs of Yellowstone National Park. J Virol 94:3. https://doi.org/10.1128/JVI.01213-19

    Article  Google Scholar 

  4. Poddar A, Das SK (2018) Microbiological studies of hot springs in India: a review. Arch Microbiol 200(1):1–18. https://doi.org/10.1007/s00203-017-1429-3

    Article  CAS  PubMed  Google Scholar 

  5. Das S, Paul S, Bag SK, Dutta C (2006) Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC Genomics 7(1):186. https://doi.org/10.1186/1471-2164-7-186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salwan R, Sharma V (2022) Genomics of prokaryotic extremophiles to unfold the mystery of survival in extreme environments. Microbiol Res 264:127156. https://doi.org/10.1016/j.micres.2022.127156

    Article  CAS  PubMed  Google Scholar 

  7. Barabote RD, **e G, Leu DH, Normand P, Necsulea A, Daubin V, Médigue C, Adney WS, Xu XC, Lapidus A, Parales RE, Detter C, Pujic P, Bruce D, Lavire C, Challacombe JF, Brettin TS, Berry AM (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19(6):1033–1043. https://doi.org/10.1101/gr.084848.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brininger C, Spradlin S, Cobani L, Evilia C (2018) The more adaptive to change, the more likely you are to survive: protein adaptation in extremophiles. Semin Cell Dev Biol 84:158–169. https://doi.org/10.1016/j.semcdb.2017.12.016

    Article  CAS  PubMed  Google Scholar 

  9. Henne A, Brüggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk H-P, Kramer W, Merkl R, Gottschalk G, Fritz H-J (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22(5):547–553. https://doi.org/10.1038/nbt956

    Article  CAS  PubMed  Google Scholar 

  10. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature (London) 399(6736):541–548. https://doi.org/10.1038/21119

    Article  CAS  PubMed  Google Scholar 

  11. Kimura M, Jia Z-J, Nakayama N, Asakawa S (2008) Ecology of viruses in soils: past, present and future perspectives. Soil Sci Plant Nutr (Tokyo) 54(1):1–32. https://doi.org/10.1111/j.1747-0765.2007.00197.x

    Article  Google Scholar 

  12. Łubkowska B, Jeżewska-frąckowiak J, Sobolewski I, Skowron PM (2021) Bacteriophages of thermophilic ‘bacillus group’ bacteria – a review. Microorganisms (Basel) 9(7):1522. https://doi.org/10.3390/microorganisms9071522

    Article  Google Scholar 

  13. Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol 8(4):444–450. https://doi.org/10.1016/j.mib.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  14. Thurber RV (2009) Current insights into phage biodiversity and biogeography. Curr Opin Microbiol 12(5):582–587. https://doi.org/10.1016/j.mib.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  15. Hurwitz BL, Sullivan MB (2013) The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One 8(2):e57355. https://doi.org/10.1371/journal.pone.0057355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Borriss M, Helmke E, Hanschke R, Schweder T (2003) Isolation and characterization of marine psychrophilic phage-host systems from Arctic Sea ice. Extremophiles 7(5):377–384. https://doi.org/10.1007/s00792-003-0334-7

    Article  CAS  PubMed  Google Scholar 

  17. Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol 4(1):201–219. https://doi.org/10.1146/annurev-virology-101416-041639

    Article  CAS  PubMed  Google Scholar 

  18. Peng X, Garrett RA, She Q (2012) Archaeal viruses novel, diverse and enigmatic. Sci China Life Sci 55(5):422–433. https://doi.org/10.1007/s11427-012-4325-8

    Article  CAS  PubMed  Google Scholar 

  19. Dellas N, Snyder JC, Bolduc B, Young MJ (2014) Archaeal viruses: diversity, replication, and structure. Annu Rev Virol 1(1):399–426. https://doi.org/10.1146/annurev-virology-031413-085357

    Article  CAS  PubMed  Google Scholar 

  20. Prangishvili D (2013) The wonderful world of archaeal viruses. Annu Rev Microbiol 67(1):565–585. https://doi.org/10.1146/annurev-micro-092412-155633

    Article  CAS  PubMed  Google Scholar 

  21. Prangishvili D, Bamford DH, Forterre P, Iranzo J, Koonin EV, Krupovic M (2017) The enigmatic archaeal virosphere. Nat Rev Microbiol 15(12):724–739. https://doi.org/10.1038/nrmicro.2017.125

    Article  CAS  PubMed  Google Scholar 

  22. Zablocki O, van Zyl L, Trindade M (2018) Biogeography and taxonomic overview of terrestrial hot spring thermophilic phages. Extremophiles 22. https://doi.org/10.1007/s00792-018-1052-5

  23. Tomova I, Stoilova-Disheva M, Lyutskanova D, Pascual J, Petrov P, Kambourova M (2010) Phylogenetic analysis of the bacterial community in a geothermal spring, Rupi Basin, Bulgaria. World J Microbiol Biotechnol 26(11):2019–2028. https://doi.org/10.1007/s11274-010-0386-7

    Article  Google Scholar 

  24. Sahoo RK, Subudhi E, Kumar M (2015) Investigation of bacterial diversity of hot springs of Odisha, India. Genomics Data 6:188–190. https://doi.org/10.1016/j.gdata.2015.09.018

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kumar M, Khanna S (2014) Shift in microbial population in response to crystalline cellulose degradation during enrichment with a semi-desert soil. Int Biodeterior Biodegradation 88:134–141. https://doi.org/10.1016/j.ibiod.2013.10.025

    Article  CAS  Google Scholar 

  26. Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, Jennings R, Fouke BW, Reysenbach A-L, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5(3):e9773. https://doi.org/10.1371/journal.pone.0009773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schoenfeld T, Patterson M, Richardson PM, Wommack KE, Young M, Mead D (2008) Assembly of viral metagenomes from Yellowstone Hot Springs. Appl Environ Microbiol 74(13):4164–4174. https://doi.org/10.1128/AEM.02598-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young MJ (2001) Viruses from extreme thermal environments. PNAS 98(23):13341–13345. https://doi.org/10.1073/pnas.231170198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rachel R, Bettstetter M, Hedlund BP, Haring M, Kessler A, Stetter KO, Prangishvili D (2002) Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments. Brief Rep Arch Virol 147(12):2419. https://doi.org/10.1007/s00705-002-0895-2

    Article  CAS  Google Scholar 

  30. Gudbergsdóttir SR, Menzel P, Krogh A, Young M, Peng X (2016) Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs. Environ Microbiol 18(3):863–874. https://doi.org/10.1111/1462-2920.13079

    Article  CAS  PubMed  Google Scholar 

  31. Rohwer F (2003) Global phage diversity, vol 113. Elsevier Inc, United States. https://doi.org/10.1016/S0092-8674(03)00276-9

    Book  Google Scholar 

  32. Charles TC, Liles MR, Sessitsch A (2017) Functional metagenomics of a replicase from a novel hyperthermophilic aquificales virus. In: Functional metagenomics: tools and applications. Springer, Cham, pp 217–242. https://doi.org/10.1007/978-3-319-61510-3_13

    Chapter  Google Scholar 

  33. Cava F, Hidalgo A, Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13(2):213–231. https://doi.org/10.1007/s00792-009-0226-6

    Article  CAS  PubMed  Google Scholar 

  34. Yu MX, Slater MR, Ackermann HW (2006) Isolation and characterization of Thermus bacteriophages. Arch Virol 151(4):663–679. https://doi.org/10.1007/s00705-005-0667-x

    Article  CAS  PubMed  Google Scholar 

  35. Hjorleifsdottir S, Aevarsson A, Hreggvidsson GO, Fridjonsson OH, Kristjansson JK (2014) Isolation, growth and genome of the Rhodothermus RM378 thermophilic bacteriophage. Extremophiles 18(2):261–270. https://doi.org/10.1007/s00792-013-0613-x

    Article  CAS  PubMed  Google Scholar 

  36. Naryshkina T, Liu J, Florens L, Swanson SK, Pavlov AR, Pavlova NV, Inman R, Minakhin L, Kozyavkin SA, Washburn M, Mushegian A, Severinov K (2006) Thermus thermophilus bacteriophage ϕYS40 genome and proteomic characterization of virions. J Mol Biol 364(4):667–677. https://doi.org/10.1016/j.jmb.2006.08.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sakaki Y, Oshima T (1975) Isolation and characterization of a bacteriophage infectious to an extreme thermophile, Thermus thermophilus HB8. J Virol 15(6):1449–1453. https://doi.org/10.1128/JVI.15.6.1449-1453.1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamakoshi M, Murakami A, Sugisawa M, Tsuneizumi K, Takeda S, Saheki T, Izumi T, Akiba T, Mitsuoka K, Toh H, Yamashita A, Arisaka F, Hattori M, Oshima T, Yamagishi A (2011) Genomic and proteomic characterization of the large Myoviridae bacteriophage ϕTMA of the extreme thermophile Thermus thermophilus. Bacteriophage 1(3):152–164. https://doi.org/10.4161/bact.1.3.16712

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu B, Wu S, **e L (2010) Complete genome sequence and proteomic analysis of a thermophilic bacteriophage BV1. Acta Oceanol Sin 29(3):84–89. https://doi.org/10.1007/s13131-010-0039-6

    Article  CAS  Google Scholar 

  40. Liu B, Zhou F, Wu S, Xu Y, Zhang X (2009) Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1. Res Microbiol 160(2):166–171. https://doi.org/10.1016/j.resmic.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  41. Lin L, Hong W, Ji X, Han J, Huang L, Wei Y (2010) Isolation and characterization of an extremely long tail Thermus bacteriophage from Tengchong hot springs in China. J Basic Microbiol 50(5):452–456. https://doi.org/10.1002/jobm.201000116

    Article  CAS  PubMed  Google Scholar 

  42. Donelli G, Dore E, Frontali C, Grandolfo ME (1975) Structure and physico-chemical properties of bacteriophage G. J Mol Biol 94(4):555–565. https://doi.org/10.1016/0022-2836(75)90321-6

    Article  CAS  PubMed  Google Scholar 

  43. Minakhin L, Goel M, Berdygulova Z, Ramanculov E, Florens L, Glazko G, Karamychev VN, Slesarev AI, Kozyavkin SA, Khromov I, Ackermann H-W, Washburn M, Mushegian A, Severinov K (2008) Genome comparison and proteomic characterization of Thermus thermophilus bacteriophages P23-45 and P74-26: siphoviruses with triplex-forming sequences and the longest known tails. J Mol Biol 378(2):468–480. https://doi.org/10.1016/j.jmb.2008.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pawlowski A, Rissanen I, Bamford JKH, Krupovic M, Jalasvuori M (2014) Gammasphaerolipovirus, a newly proposed bacteriophage genus, unifies viruses of halophilic archaea and thermophilic bacteria within the novel family Sphaerolipoviridae. Arch Virol 159(6):1541–1554. https://doi.org/10.1007/s00705-013-1970-6

    Article  CAS  PubMed  Google Scholar 

  45. Jalasvuori M, Pawlowski A, Bamford JKH (2010) A unique group of virus-related, genome-integrating elements found solely in the bacterial family Thermaceae and the archaeal family Halobacteriaceae. J Bacteriol 192(12):3231–3234. https://doi.org/10.1128/JB.00124-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B (2002) Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 68(2):745–755. https://doi.org/10.1128/AEM.68.2.745-755.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ackermann HW (2001) Frequency of morphological phage descriptions in the year 2000. Arch Virol 146(5):843–857. https://doi.org/10.1007/s007050170120

    Article  CAS  PubMed  Google Scholar 

  48. Pederson DM, Welsh LC, Marvin DA, Sampson M, Perham RN, Yu M, Slater MR (2001) The protein capsid of filamentous bacteriophage PH75 from Thermus thermophilus. J Mol Biol 309(2):401–421. https://doi.org/10.1006/jmbi.2001.4685

    Article  CAS  PubMed  Google Scholar 

  49. Overman SA, Bondre P, Maiti NC, Thomas GJ (2005) Structural characterization of the filamentous bacteriophage PH75 from Thermus thermophilus by Raman and UV-resonance Raman spectroscopy. Biochemistry (Easton) 44(8):3091–3100. https://doi.org/10.1021/bi048163d

    Article  CAS  Google Scholar 

  50. Nagayoshi Y, Kumagae K, Mori K, Tashiro K, Nakamura A, Fu**o Y, Hiromasa Y, Iwamoto T, Kuhara S, Ohshima T, Doi K (2016) Physiological properties and genome structure of the hyperthermophilic filamentous phage φOH3 which infects Thermus thermophilus HB8. Front Microbiol 7:50. https://doi.org/10.3389/fmicb.2016.00050

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tsuboi M, Benevides JM, Bondre P, Thomas GJ (2005) Structural details of the thermophilic filamentous bacteriophage PH75 determined by polarized Raman microspectroscopy. Biochemistry (Easton) 44(12):4861–4869. https://doi.org/10.1021/bi0479306

    Article  CAS  Google Scholar 

  52. Suzuki H, Wada K, Furukawa M, Doi K, Ohshima T (2013) A ternary conjugation system for the construction of DNA libraries for Geobacillus kaustophilus HTA426. Biosci Biotechnol Biochem 77(11):2316–2318. https://doi.org/10.1271/bbb.130492

    Article  CAS  PubMed  Google Scholar 

  53. Wiegel J, Ljungdahl LG, Demain AL (1985) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3(1):39–108. https://doi.org/10.3109/07388558509150780

    Article  Google Scholar 

  54. Szeker K, Zhou X, Schwab T, Casanueva A, Cowan D, Mikhailopulo IA, Neubauer P (2012) Comparative investigations on thermostable pyrimidine nucleoside phosphorylases from Geobacillus thermoglucosidasius and Thermus thermophilus. J Mol Catal B Enzym 84:27–34. https://doi.org/10.1016/j.molcatb.2012.02.006

    Article  CAS  Google Scholar 

  55. Hussein A, Lisowska B, Leak D (2015) The genus Geobacillus and their biotechnological potential. Adv Appl Microbiol 92:1–48. https://doi.org/10.1016/bs.aambs.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  56. Turner P, Mamo G, Karlsson E (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Factories 6:9. https://doi.org/10.1186/1475-2859-6-9

    Article  CAS  Google Scholar 

  57. Van Zyl LJ, Taylor MP, Eley K, Tuffin M, Cowan DA (2014) Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius. Appl Microbiol Biotechnol 98(3):1247–1259. https://doi.org/10.1007/s00253-013-5380-1

    Article  CAS  PubMed  Google Scholar 

  58. Blanchard K, Robic S, Matsumura I (2014) Transformable facultative thermophile Geobacillus stearothermophilus NUB3621 as a host strain for metabolic engineering. Appl Microbiol Biotechnol 98(15):6715–6723. https://doi.org/10.1007/s00253-014-5746-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marks T (2020) Development of a genetic toolbox for Geobacillus kaustophilus using novel bacteriophages GBK1 and GBK2. ProQuest Dissertations Publishing

    Google Scholar 

  60. van Zyl LJ, Sunda F, Taylor MP, Cowan DA, Trindade MI (2015) Identification and characterization of a novel Geobacillus thermoglucosidasius bacteriophage, GVE3. Arch Virol 160(9):2269–2282. https://doi.org/10.1007/s00705-015-2497-9

    Article  CAS  PubMed  Google Scholar 

  61. Court D, Sawitzke J, Thomason L (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388. https://doi.org/10.1146/annurev.genet.36.061102.093104

    Article  CAS  PubMed  Google Scholar 

  62. Muyrers J, Zhang Y, Testa G, Stewart A (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27(6):1555–1557. https://doi.org/10.1093/nar/27.6.1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murphy K (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180(8):2063–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee E, Yu D, Martinez de Velasco J, Tessarollo L, Swing D, Court D, Jenkins N, Copeland N (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73(1):56–65. https://doi.org/10.1006/geno.2000.6451

    Article  CAS  PubMed  Google Scholar 

  65. Stewart AF, Zhang Y, Buchholz F, Muyrers JPP (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128. https://doi.org/10.1038/2417

    Article  CAS  PubMed  Google Scholar 

  66. Hatfull GF, van Kessel JC (2007) Recombineering in mycobacterium tuberculosis. Nat Methods 4(2):147–152. https://doi.org/10.1038/nmeth996

    Article  CAS  PubMed  Google Scholar 

  67. Sun Z, Deng A, Hu T, Wu J, Sun Q, Bai H, Zhang G, Wen T (2015) A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Appl Microbiol Biotechnol 99(12):5151–5162. https://doi.org/10.1007/s00253-015-6485-5

    Article  CAS  PubMed  Google Scholar 

  68. Sunderland KS, Yang M, Mao C (2017) Phage-enabled nanomedicine: from probes to therapeutics in precision medicine. Angewandte Chemie (International ed) 56(8):1964–1992. https://doi.org/10.1002/anie.201606181

    Article  CAS  Google Scholar 

  69. Shapiro JW, Putonti C (2018) Gene co-occurrence networks reflect bacteriophage ecology and evolution. mBio 9(2). https://doi.org/10.1128/mBio.01870-17

  70. Maat DS, Biggs T, Evans C, van Bleijswijk JDL, van der Wel NN, Dutilh BE, Brussaard CPD (2017) Characterization and temperature dependence of Arctic Micromonas polaris viruses. Viruses 9(6):134. https://doi.org/10.3390/v9060134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gil JF, Mesa V, Estrada-Ortiz N, Lopez-Obando M, Gómez A, Plácido J (2021) Viruses in extreme environments, current overview, and biotechnological potential. Viruses 13(1):81. https://doi.org/10.3390/v13010081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hughes KA, Sutherland IW, Clark J, Jones MV (1998) Bacteriophage and associated polysaccharide depolymerases – novel tools for study of bacterial biofilms. J Appl Microbiol 85(3):583–590. https://doi.org/10.1046/j.1365-2672.1998.853541.x

    Article  CAS  PubMed  Google Scholar 

  73. Parasion S, Kwiatek M, Gryko R, Mizak L, Malm A (2014) Bacteriophages as an alternative strategy for fighting biofilm development. Pol J Microbiol 63(2):137–145. https://doi.org/10.33073/pjm-2014-019

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Marks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marks, T.J., Rowland, I.R. (2024). The Diversity of Bacteriophages in Hot Springs. In: Tumban, E. (eds) Bacteriophages. Methods in Molecular Biology, vol 2738. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3549-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3549-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3548-3

  • Online ISBN: 978-1-0716-3549-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation