The Oxford Nanopore MinION as a Versatile Technology for the Diagnosis and Characterization of Emerging Plant Viruses

  • Protocol
  • First Online:
Viral Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2732))

Abstract

The emergence of novel viral epidemics that could affect major crops represents a serious threat to global food security. The early and accurate identification of the causative viral agent is the most important step for a rapid and effective response to disease outbreaks. Over the last years, the Oxford Nanopore Technologies (ONT) MinION sequencer has been proposed as an effective diagnostic tool for the early detection and identification of emerging viruses in plants, providing many advantages compared with different high-throughput sequencing (HTS) technologies. Here, we provide a step-by-step protocol that we optimized to obtain the virome of “Lamon bean” plants (Phaseolus vulgaris L.), an agricultural product with Protected Geographical Indication (PGI) in North–East of Italy, which is frequently subjected to multiple infections caused by different RNA viruses. The conversion of viral RNA in ds-cDNA enabled the use of Genomic DNA Ligation Sequencing Kit and Native Barcoding DNA Kit, which have been originally developed for DNA sequencing. This allowed the simultaneous diagnosis of both DNA- and RNA-based pathogens, providing a more versatile alternative to the use of direct RNA and/or direct cDNA sequencing kits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson PK, Cunningham AA, Patel NG et al (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    Article  PubMed  Google Scholar 

  2. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  PubMed  Google Scholar 

  3. Burbank LP, Roper MC (2021) Microbe profile: Xylella fastidiosa – a devastating agricultural pathogen with an endophytic lifestyle. Microbiology 167(10):001091

    Article  CAS  PubMed  Google Scholar 

  4. Jones RAC (2021) Global plant virus disease pandemics and epidemics. Plants 10:233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones RAC (2020) Disease pandemics and major epidemics arising from new encounters between indigenous viruses and introduced crops. Viruses 12:1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vurro M, Bonciani B, Vannacci G (2010) Emerging infectious diseases of crop plants in develo** countries: impact on agriculture and socio-economic consequences. Food Secur 2:113–132

    Article  Google Scholar 

  7. Chalupowicz L, Dombrovsky A, Gaba V et al (2019) Diagnosis of plant diseases using the Nanopore sequencing platform. Plant Pathol 68:229–238

    Article  CAS  Google Scholar 

  8. Marcolungo L, Passera A, Maestri S et al (2022) Real-time on-site diagnosis of quarantine pathogens in plant tissues by nanopore-based sequencing. Pathogens 11(2):199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Villamor DEV, Ho T, Al Rwahnih M et al (2019) High throughput sequencing for plant virus detection and discovery. Phytopathology 109:716–725

    Article  CAS  PubMed  Google Scholar 

  10. Tarquini G, Martini M, Maestri SF et al (2022) The virome of ‘Lamon Bean’: application of MinION sequencing to investigate the virus population associated with symptomatic beans in the Lamon Area, Italy. Plants 11:779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liefting LW, Waite DW, Thompson JR (2021) Application of Oxford nanopore technology to plant virus detection. Viruses 13:1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu H, Giordano F, Ning Z (2016) Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinf 14:265–279

    Article  Google Scholar 

  13. Maestri S, Maturo MG, Cosentino E et al (2020) A long-read sequencing approach for direct haplotype phasing in clinical settings. Int J Mol Sci 21:9177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maestri S, Cosentino E, Paterno M et al (2019) A rapid and accurate MinION-based workflow for tracking species biodiversity in the field. Genes 10:468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lopatriello G, Maestri S, Alfano M et al (2023) CRISPR/Cas9-mediated enrichment coupled to nanopore sequencing provides a valuable tool for the precise reconstruction of large genomic target regions. Int J Mol Sci 24:1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alfano M, De Antoni L, Centofanti F et al (2022) Characterization of full-length CNBP expanded alleles in myotonic dystrophy type 2 patients by Cas9-mediated enrichment and nanopore sequencing. elife 11:e80229

    Article  CAS  PubMed  Google Scholar 

  17. Grosso V, Marcolungo L, Maestri S et al (2021) Characterization of FMR1 repeat expansion and intragenic variants by indirect sequence capture. Front Genet 12:743230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santos A, van Aerle R, Barrientos L et al (2020) Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput Struct Biotechnol J 18:296–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zepeda Mendoza ML, Sicheritz-Ponten T, Gilbert MTP (2015) Environmental genes and genomes: understanding the differences and challenges in the approaches and software for their analyses. Brief Bioinform 16:745–758

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ciuffreda L, Rodríguez-Pérez H, Flores C (2021) Nanopore sequencing and its application to the study of microbial communities. Comput Struct Biotechnol J 19:1497–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitsuhashi S, Kryukov K, Nakagawa S et al (2017) A portable system for rapid bacterial composition analysis using a nanopore-based sequencer and laptop computer. Sci Rep 7:1–9

    Article  Google Scholar 

  22. Wood DE, Lu J, Langmead B (2019) Improved metagenomic analysis with Kraken 2. Genome Biol 20:1–13

    Article  Google Scholar 

  23. Altschul SF, Gish W, Miller, et al. (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  24. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiełbasa SM, Wan R, Sato K et al (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21:487–493

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  27. Castanera R (2022) A flexible and reproducible pipeline for long-read assembly and evaluation. Peer Commun Genom 1:100018

    Article  Google Scholar 

  28. Koren S, Walenz BP, Berlin K et al (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kolmogorov M, Bickhart DM, Behsaz B et al (2020) metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods 17:1103–1110

    Article  CAS  PubMed  Google Scholar 

  30. Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:1–17

    Article  Google Scholar 

  31. Sun K, Liu Y, Zhou X et al (2022) Nanopore sequencing technology and its application in plant virus diagnostics. Front Microbiol 13:939666

    Article  PubMed  PubMed Central  Google Scholar 

  32. Czotter N, Molnar J, Szabó E et al (2018) NGS of virus-derived small rnas as a diagnostic method used to determine viromes of Hungarian vineyards. Front Microbiol 9:122

    Article  PubMed Central  Google Scholar 

  33. Minicka J, Zarzyńska-Nowak A, Budzyńska D et al (2020) High-throughput sequencing facilitates discovery of new plant viruses in Poland. Plants 9:820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Coster W, D’Hert S, Schultz DT et al (2018) NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34:2666–2669

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tange O (2011) Gnu parallel-the command-line power tool. USENIX Magaz 36:42–47

    Google Scholar 

  36. Chamberlain SA, Szöcs E (2013) taxize: taxonomic search and retrieval in R. F1000Research 2:191

    Google Scholar 

  37. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinf 12:1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Martini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tarquini, G., Maestri, S., Ermacora, P., Martini, M. (2024). The Oxford Nanopore MinION as a Versatile Technology for the Diagnosis and Characterization of Emerging Plant Viruses. In: Pantaleo, V., Miozzi, L. (eds) Viral Metagenomics. Methods in Molecular Biology, vol 2732. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3515-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3515-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3514-8

  • Online ISBN: 978-1-0716-3515-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation