High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics

  • Protocol
  • First Online:
Microfluidic Systems for Cancer Diagnosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2679))

  • 507 Accesses

Abstract

Detection of malignant tumor cells (MTCs) in pleural effusions is essential for determining the malignancy. However, the sensitivity of MTC detection is significantly decreased due to the existence of a massive number of background blood cells in large-volume samples. Herein, we provide a method for on-chip separation and enrichment of MTCs from malignant pleural effusions (MPEs) by integrating an inertial microfluidic sorter with an inertial microfluidic concentrator. The designed sorter and concentrator are capable of focusing cells toward the specified equilibrium positions by inducing intrinsic hydrodynamic forces, enabling the size-based sorting of cells and the removal of cell-free fluids for cell enrichment. A 99.9% removal of background cells and a nearly 1400-fold ultrahigh enrichment of MTCs from large-volume MPEs can be achieved by this method. The concentrated high-purity MTC solution can be used directly for cytological examination by immunofluorescence staining, enhancing the accurate identification of MPEs. The proposed method can also be employed for the detection and count of rare cells in various clinical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baburaj G, Damerla RR, Udupa KS et al (2020) Liquid biopsy approaches for pleural effusion in lung cancer patients. Mol Biol Rep 47:8179–8187

    Article  CAS  PubMed  Google Scholar 

  2. Sun Y, Hu Y, Wan C et al (2021) Local biomaterial-assisted antitumour immunotherapy for effusions in the pleural and peritoneal cavities caused by malignancies. Biomater Sci 9:6381–6390

    Article  CAS  PubMed  Google Scholar 

  3. Paterson K, Zanivan S, Glasspool R et al (2021) Microfluidic technologies for immunotherapy studies on solid tumours. Lab Chip 21:2306–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang R, Agrawal S, Aghaamoo M et al (2021) Rapid isolation of circulating cancer associated fibroblasts by acoustic microstreaming for assessing metastatic propensity of breast cancer patients. Lab Chip 21:875–887

    Article  CAS  PubMed  Google Scholar 

  5. Wu C-G, Chiovaro F, Curioni A et al (2020) In vitro cell culture of patient derived malignant pleural and peritoneal effusions for personalised drug screening. J Transl Med 18:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pillai V, Cibas ES, Dorfman DM (2013) A simplified flow cytometric Immunophenoty** procedure for the diagnosis of effusions caused by epithelial malignancies. Am J Clin Pathol 139:672–681

    Article  CAS  PubMed  Google Scholar 

  7. Billah S, Stewart J, Staerkel G et al (2011) EGFR and KRAS mutations in lung carcinoma molecular testing by using cytology specimens. Cancer Cytopathol 119:111–117

    Article  CAS  PubMed  Google Scholar 

  8. Psallidas I, Kalomenidis I, Porcel JM et al (2016) Malignant pleural effusion: from bench to bedside. Eur Respir Rev 25:189–198

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen J, Li J, Sun Y (2012) Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12:1753–1767

    Article  CAS  PubMed  Google Scholar 

  10. Sun J, Gao L, Wang L et al (2021) Recent advances in single-cell analysis: encapsulation materials, analysis methods and integrative platform for microfluidic technology. Talanta 234:122671

    Article  CAS  PubMed  Google Scholar 

  11. Zhu S, Fang Y, Chen Y et al (2022) Stackable micromixer with modular design for efficient mixing over wide Reynold numbers. Int J Heat Mass Tran 183:122129

    Article  CAS  Google Scholar 

  12. Hu D, Liu H, Tian Y et al (2020) Sorting Technology for Circulating Tumor Cells Based on microfluidics. ACS Comb Sci 22:701–711

    Article  CAS  PubMed  Google Scholar 

  13. Zhu S, Jiang F, Han Y et al (2020) Microfluidics for label-free sorting of rare circulating tumor cells. Analyst 145:7103–7124

    Article  CAS  PubMed  Google Scholar 

  14. Tang W, Zhu S, Jiang D et al (2020) Channel innovations for inertial microfluidics. Lab Chip 20:3485–3502

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Zhou Z, Zhu S et al (2022) Label-free microfluidics for single-cell analysis. Microchem J 177:107284

    Article  CAS  Google Scholar 

  16. Zhu S, Zhang X, Zhou Z et al (2021) Microfluidic impedance cytometry for single-cell sensing: review on electrode configurations. Talanta 233:122571

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Z, Chen Y, Zhu S et al (2021) Inertial microfluidics for high-throughput cell analysis and detection: a review. Analyst 146:6064–6083

    Article  CAS  PubMed  Google Scholar 

  18. Song Y, Han X, Li D et al (2021) Simultaneous and continuous particle separation and counting via localized DC-dielectrophoresis in a microfluidic chip. RSC Adv 11:3827–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li P, Zhong J, Liu N et al (2021) Physical properties-based microparticle sorting at submicron resolution using a tunable acoustofluidic device. Sens Actuators B Chem 344:130203

    Article  CAS  Google Scholar 

  20. Ning S, Liu S, **ao Y et al (2021) A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves. Lab Chip 21:4608–4617

    Article  CAS  PubMed  Google Scholar 

  21. Lu X, Liu C, Hu G et al (2017) Particle manipulations in non-Newtonian microfluidics: a review. J Colloid Interface Sci 500:182–201

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Z, Wu D, Li S et al (2021) A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation. Anal Chim Acta 1143:306–314

    Article  CAS  PubMed  Google Scholar 

  23. Ren H, Zhu Z, **ang N et al (2021) Multiplexed serpentine microchannels for high-throughput sorting of disseminated tumor cells from malignant pleural effusion. Sens Actuators B Chem 337:129758

    Article  CAS  Google Scholar 

  24. Zhu S, Zhang X, Chen M et al (2021) An easy-fabricated and disposable polymer-film microfluidic impedance cytometer for cell sensing. Anal Chim Acta:1175

    Google Scholar 

  25. Zhu Z, Li S, Wu D et al (2022) High-throughput and label-free enrichment of malignant tumor cells and clusters from pleural and peritoneal effusions using inertial microfluidics. Lab Chip 22:2097–2106

    Article  CAS  PubMed  Google Scholar 

  26. **ang N, Ni Z (2022) High-throughput concentration of rare malignant tumor cells from large-volume effusions by multistage inertial microfluidics. Lab Chip 22:757–767

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research work is supported by the National Natural Science Foundation of China (51875103) and the Natural Science Foundation of Jiangsu Province (BK20190064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan **ang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ni, C., Zhu, Z., Zhou, Z., **ang, N. (2023). High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics. In: Garcia-Cordero, J.L., Revzin, A. (eds) Microfluidic Systems for Cancer Diagnosis . Methods in Molecular Biology, vol 2679. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3271-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3271-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3270-3

  • Online ISBN: 978-1-0716-3271-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation