Genetics and Family History of Alcohol Use Disorders

  • Protocol
  • First Online:
Translational Research Methods for Alcohol Use Disorders

Part of the book series: Neuromethods ((NM,volume 201))

  • 192 Accesses

Abstract

Alcohol use disorders (AUD) are complex traits that are moderately heritable. A variety of approaches have been developed that allow researchers to better understand their genetic etiology. We cover several approaches for incorporating information on family history and genetic risk into research on AUD. Latent genetic designs leverage information from biological relatives. The classic twin design helps to understand population variability in AUD, while other approaches using family data can be applied to better understand individual risk. Measured genotypic approaches, such as genome-wide association studies (GWAS), use information from the entire genome to identify individual variants associated with risk for AUD. GWAS results can then be transformed into aggregate measures of individual risk in the form of polygenic scores (PGS) in non-overlap** samples. We discuss specific approaches to these methods, various considerations for each, and the limitations with currently available tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Degenhardt L, Charlson F, Ferrari A et al (2018) The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry 5:987–1012. https://doi.org/10.1016/S2215-0366(18)30337-7

    Article  Google Scholar 

  2. Murray CJLL, Mokdad AH, Ballestros K et al (2018) The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA 319:1444–1472. https://doi.org/10.1001/jama.2018.0158

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vigo D, Thornicroft G, Atun R (2016) Estimating the true global burden of mental illness. Lancet Psychiatry 3:171–178. https://doi.org/10.1016/S2215-0366(15)00505-2

    Article  PubMed  Google Scholar 

  4. Griswold MG, Fullman N, Hawley C et al (2018) Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 392:1015–1035. https://doi.org/10.1016/S0140-6736(18)31310-2

    Article  Google Scholar 

  5. Smothers BA, Yahr HT, Ruhl CE (2004) Detection of alcohol use disorders in general hospital admissions in the United States. Arch Intern Med 164:749–756. https://doi.org/10.1001/ARCHINTE.164.7.749

    Article  PubMed  Google Scholar 

  6. Mekonen T, Chan GCK, Connor J et al (2021) Treatment rates for alcohol use disorders: a systematic review and meta-analysis. Addiction 116:2617–2634. https://doi.org/10.1111/ADD.15357

    Article  PubMed  Google Scholar 

  7. Galea S, Nandi A, Vlahov D (2004) The social epidemiology of substance use. Epidemiol Rev 26:36–52. https://doi.org/10.1093/EPIREV/MXH007

    Article  PubMed  Google Scholar 

  8. Zhou H, Sealock JM, Sanchez-Roige S et al (2020) Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat Neurosci. https://doi.org/10.1038/s41593-020-0643-5

  9. Karriker-Jaffe KJ (2013) Neighborhood socioeconomic status and substance use by U.S. adults. Drug Alcohol Depend 133:212–221. https://doi.org/10.1016/j.drugalcdep.2013.04.033

    Article  PubMed  PubMed Central  Google Scholar 

  10. Verhulst B, Neale MC, Kendler KS (2015) The heritability of alcohol use disorders: a meta-analysis of twin and adoption studies. Psychol Med 45:1061–1072. https://doi.org/10.1017/S0033291714002165

    Article  CAS  PubMed  Google Scholar 

  11. Sanchez-Roige S, Palmer AA, Clarke TK (2020) Recent efforts to dissect the genetic basis of alcohol use and abuse. Biol Psychiatry 87(7):609–618. https://doi.org/10.1016/j.biopsych.2019.09.011

  12. Walters RK, Polimanti R, Johnson EC et al (2018) Trans-ancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci 21:1656–1669. https://doi.org/10.1038/s41593-018-0275-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karlsson Linnér R, Mallard TT, Barr PB et al (2021) Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat Neurosci:1–10. https://doi.org/10.1038/s41593-021-00908-3

  14. Demontis D, Walters RK, Martin J et al (2019) Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet 51:63–75. https://doi.org/10.1038/s41588-018-0269-7

    Article  CAS  PubMed  Google Scholar 

  15. Zhou H, Rentsch CT, Cheng Z et al (2020) Association of OPRM1 functional coding variant with opioid use disorder: a genome-wide association study. JAMA Psychiatry. https://doi.org/10.1001/jamapsychiatry.2020.1206

  16. Johnson EC, Demontis D, Thorgeirsson TE et al (2020) A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry. https://doi.org/10.1016/S2215-0366(20)30339-4

  17. Levey DF, Stein MB, Wendt FR et al (2021) Bi-ancestral depression GWAS in the million veteran program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat Neurosci. https://doi.org/10.1038/s41593-021-00860-2

  18. Levey DF, Gelernter J, Polimanti R et al (2020) Reproducible genetic risk loci for anxiety: results from ∼200,000 participants in the million veteran program. Am J Psychiatry. https://doi.org/10.1176/appi.ajp.2019.19030256

  19. Mullins N, Forstner AJ, O’Connell KS et al (2021) Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. https://doi.org/10.1038/s41588-021-00857-4

  20. Trubetskoy V, Pardiñas AF, Qi T et al (2022) Map** genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022:1–13. https://doi.org/10.1038/s41586-022-04434-5

    Article  CAS  Google Scholar 

  21. Kendler KS, Gardner C, Dick DM (2011) Predicting alcohol consumption in adolescence from alcohol-specific and general externalizing genetic risk factors, key environmental exposures and their interaction. Psychol Med 41:1507–1516. https://doi.org/10.1017/S003329171000190X.Predicting

    Article  CAS  PubMed  Google Scholar 

  22. Meyers JL, Salvatore JE, Vuoksimaa E et al (2014) Genetic influences on alcohol use behaviors have diverging developmental trajectories: a prospective study among male and female twins. Alcohol Clin Exp Res 38:2869–2877. https://doi.org/10.1111/acer.12560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McLeod JD (1995) Social and psychological bases of homogamy for common psychiatric disorders. J Marriage Fam 57:201. https://doi.org/10.2307/353828

    Article  Google Scholar 

  24. Barr PB, Kuo SI, Aliev F et al (2019) Polygenic risk for alcohol misuse is moderated by romantic partnerships. Addiction 114:1753–1762. https://doi.org/10.1111/add.14712

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stoltenberg SF, Mudd SA, Blow FC, Hill EM (1998) Evaluating measures of family history of alcoholism: density versus dichotomy. Addiction 93:1511–1520. https://doi.org/10.1046/J.1360-0443.1998.931015117.X

    Article  CAS  PubMed  Google Scholar 

  26. Pandey G, Seay MJ, Meyers JL et al (2020) Density and dichotomous family history measures of alcohol use disorder as predictors of behavioral and neural phenotypes: a comparative study across gender and race/ethnicity. Alcohol Clin Exp Res 44:697–710. https://doi.org/10.1111/ACER.14280

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bross IDJ (1958) How to use ridit analysis. Biometrics 14:18. https://doi.org/10.2307/2527727

    Article  Google Scholar 

  28. Wichers M, Gillespie NA, Kendler KS (2013) Genetic and environmental predictors of latent trajectories of alcohol use from adolescence to adulthood: a male twin study. Alcohol Clin Exp Res 37:498–506. https://doi.org/10.1111/J.1530-0277.2012.01939.X

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kendler KS, Ohlsson H, Sundquist J, Sundquist K (2021) Family genetic risk scores and the genetic architecture of major affective and psychotic disorders in a Swedish national sample. JAMA Psychiatry 78:735–743. https://doi.org/10.1001/JAMAPSYCHIATRY.2021.0336

    Article  PubMed  Google Scholar 

  30. Kendler KS, Ohlsson H, Sundquist J, Sundquist K (2021) The impact of sex, age at onset, recurrence, mode of ascertainment and medical complications on the family genetic risk score profiles for alcohol use disorder. Psychol Med:1–9. https://doi.org/10.1017/S0033291721003317

  31. Kendler KS, Ohlsson H, Sundquist J, Sundquist K (2021) The patterns of family genetic risk scores for eleven major psychiatric and substance use disorders in a Swedish national sample. Transl Psychiatry 11:1–8. https://doi.org/10.1038/s41398-021-01454-z

    Article  Google Scholar 

  32. Duncan LE, Keller MC (2011) A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiatr 168:1041–1049. https://doi.org/10.1176/appi.ajp.2011.11020191

    Article  PubMed  Google Scholar 

  33. Border R, Johnson EC, Evans LM et al (2019) No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. Am J Psychiatr 176:376–387. https://doi.org/10.1176/appi.ajp.2018.18070881

    Article  PubMed  Google Scholar 

  34. Liu M, Jiang Y, Wedow R et al (2019) Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 51:237–244. https://doi.org/10.1038/s41588-018-0307-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kranzler HR, Zhou H, Kember RL et al (2019) Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat Commun 10:1499. https://doi.org/10.1038/s41467-019-09480-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Visscher PM, Wray NR, Zhang Q et al (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22. https://doi.org/10.1016/j.ajhg.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mills MC, Rahal C (2019) A scientometric review of genome-wide association studies. Commun Biol 2:9. https://doi.org/10.1038/s42003-018-0261-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Verlouw JAM, Clemens E, de Vries JH et al (2021) A comparison of genoty** arrays. Eur J Hum Genet 29:1611–1624. https://doi.org/10.1038/s41431-021-00917-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Uffelmann E, Huang QQ, Munung NS et al (2021) Genome-wide association studies. Nat Rev Methods Primers 1:1–21. https://doi.org/10.1038/s43586-021-00056-9

    Article  CAS  Google Scholar 

  40. Auton A, Abecasis GR, Altshuler DM et al (2015) A global reference for human genetic variation. Nature 526:68–74. https://doi.org/10.1038/nature15393

    Article  CAS  PubMed  Google Scholar 

  41. Harris KM (2013) The Add Health Study:Design and Accomplishments. https://doi.org/10.17615/C6TW87

  42. Harris KM (2009) The National Longitudinal Study of Adolescent to Adult Health (Add Health), waves I & II, 1994–1996; wave III, 2001–2002; wave IV, 2007–2009 [machine-readable data file and documentation]. Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill

    Google Scholar 

  43. Braudt DB, Mullan Harris K (2018) Polygenic Scores (PGSs) in the National Longitudinal Study of Adolescent to Adult Health (Add Health) – release 1. Carolina Population Center, Chapel Hill

    Google Scholar 

  44. Peterson RE, Kuchenbaecker K, Walters RK et al (2019) Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179:589–603. https://doi.org/10.1016/j.cell.2019.08.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peterson RE, Edwards AC, Bacanu SA et al (2017) The utility of empirically assigning ancestry groups in cross-population genetic studies of addiction. Am J Addict 26:494–501. https://doi.org/10.1111/ajad.12586

    Article  PubMed  PubMed Central  Google Scholar 

  46. Taliun D, Harris DN, Kessler MD et al (2021) Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590(7845):290–299. https://doi.org/10.1038/s41586-021-03205-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Watanabe K, Taskesen E, van Bochoven A, Posthuma D (2017) Functional map** and annotation of genetic associations with FUMA. Nat Commun 8:1–11. https://doi.org/10.1038/s41467-017-01261-5

    Article  CAS  Google Scholar 

  48. Sey NYA, Hu B, Mah W et al (2020) A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nature Neuroscience 23(4):583–593. https://doi.org/10.1038/s41593-020-0603-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gamazon ER, Wheeler HE, Shah KP et al (2015) A gene-based association method for map** traits using reference transcriptome data. Nature Genetics 47(9):1091–1098. https://doi.org/10.1038/ng.3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barbeira AN, Dickinson SP, Bonazzola R et al (2018) Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun 9(1):1–20. https://doi.org/10.1038/s41467-018-03621-1

    Article  CAS  Google Scholar 

  51. Bulik-Sullivan B, Finucane HK, Anttila V et al (2015) An atlas of genetic correlations across human diseases and traits. Nat Genet 47(11):1236–1241. https://doi.org/10.1038/ng.3406

  52. Bulik-Sullivan BK, Loh P-RR, Finucane HK et al (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47:291–295. https://doi.org/10.1038/ng.3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Finucane HK, Bulik-Sullivan B, Gusev A et al (2015) Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet 47:1228. https://doi.org/10.1038/ng.3404. https://www.nature.com/articles/ng.3404#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanderson E, Glymour MM, Holmes MV et al (2022) Mendelian randomization. Nat Rev Methods Primers 2(1):1–21. https://doi.org/10.1038/s43586-021-00092-5

    Article  CAS  Google Scholar 

  55. Davey Smith G, Ebrahim S, Smith GD, Ebrahim S (2004) Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol 33:30–42. https://doi.org/10.1093/ije/dyh132

    Article  Google Scholar 

  56. Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23:R89–R98. https://doi.org/10.1093/hmg/ddu328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lawlor DA, Harbord RM, Sterne JACC et al (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27:1133–1163. https://doi.org/10.1002/sim.3034

    Article  PubMed  Google Scholar 

  58. Vilhjálmsson BJ, Jian Yang HKF, Alexander Gusev SL et al (2015) Modeling linkage disequilibrium increases accuracy of polygenicrisk scores. Am J Hum Genet 97:576–592. https://doi.org/10.1016/j.ajhg.2015.09.001

  59. Ge T, Chen C-Y, Ni Y et al (2019) Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun 10:1776. https://doi.org/10.1038/s41467-019-09718-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ni G, Zeng J, Revez JA et al (2021) A comparison of ten polygenic score methods for psychiatric disorders applied across multiple cohorts. Biol Psychiatry 90:611–620. https://doi.org/10.1016/J.BIOPSYCH.2021.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sohail M, Maier RM, Ganna A et al (2019) Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. elife 8. https://doi.org/10.7554/ELIFE.39702

  62. Berg JJ, Harpak A, Sinnott-Armstrong N et al (2019) Reduced signal for polygenic adaptation of height in UK biobank. elife 8. https://doi.org/10.7554/ELIFE.39725

  63. Barr PB, Driver MN, I-Chun Kuo S et al (2022) Clinical, environmental, and genetic risk factors for substance use disorders: characterizing combined effects across multiple cohorts. Mol Psychiatry 27:4633–4641. https://doi.org/10.1038/s41380-022-01801-6

  64. Keller MC (2013) Gene × environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solution. Biol Psychiatry 75:18–24. https://doi.org/10.1016/j.biopsych.2013.09.006

    Article  PubMed  Google Scholar 

  65. Lewis CM, Vassos E (2020) Polygenic risk scores: from research tools to clinical instruments. Genome Med 12:1–11. https://doi.org/10.1186/S13073-020-00742-5/TABLES/2

    Article  Google Scholar 

  66. Wray NR, Lin T, Austin J et al (2021) From basic science to clinical application of polygenic risk scores. JAMA Psychiatry 78(1):101–109. https://doi.org/10.1001/jamapsychiatry.2020.3049

  67. Hao L, Kraft P, Berriz GF et al (2022) Development of a clinical polygenic risk score assay and reporting workflow. Nat Med 28(5):1006–1013. https://doi.org/10.1038/s41591-022-01767-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Barr PB, Ksinan A, Su J et al (2020) Using polygenic scores for identifying individuals at increased risk of substance use disorders in clinical and population samples. Transl Psychiatry 10:196. https://doi.org/10.1038/s41398-020-00865-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yeung EW, Spychala KM, Miller AP et al (2022) Effects of genetic risk for alcohol dependence and onset of regular drinking on the progression to alcohol dependence: a polygenic risk score approach. Drug Alcohol Depend 230:109117. https://doi.org/10.1016/J.DRUGALCDEP.2021.109117

    Article  CAS  PubMed  Google Scholar 

  70. Dudbridge F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genet 9:e1003348. https://doi.org/10.1371/journal.pgen.1003348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Duncan L, Shen H, Gelaye B et al (2019) Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun. https://doi.org/10.1038/s41467-019-11112-0

  72. Martin AR, Gignoux CR, Walters RK et al (2017) Human demographic history impacts genetic risk prediction across diverse populations. Am J Hum Genet 100:635–649. https://doi.org/10.1016/j.ajhg.2017.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ruan Y, Lin Y-F, Feng Y-CA et al (2022) Improving polygenic prediction in ancestrally diverse populations. Nat Genet. https://doi.org/10.1038/s41588-022-01054-7

  74. Weissbrod O, Kanai M, Shi H et al (2022) Leveraging fine-map** and multipopulation training data to improve cross-population polygenic risk scores. Nat Genet 54(4):450–458. https://doi.org/10.1038/s41588-022-01036-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Martin AR, Kanai M, Kamatani Y et al (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet 51:584–591. https://doi.org/10.1038/s41588-019-0379-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Márquez-Luna C, Gazal S, Loh PR et al (2021) Incorporating functional priors improves polygenic prediction accuracy in UK biobank and 23andMe data sets. Nature Communications 12(1):1–11. https://doi.org/10.1038/s41467-021-25171-9

    Article  CAS  Google Scholar 

  77. International Schizophrenia Consortium, Purcell SM, Wray NR et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752. https://doi.org/10.1038/nature08185

    Article  CAS  PubMed Central  Google Scholar 

  78. Privé F, Arbel J, Vilhjálmsson BJ (2020) LDpred2: better, faster, stronger. Bioinformatics 36:1–14. https://doi.org/10.1093/bioinformatics/btaa1029

  79. Lloyd-Jones LR, Zeng J, Sidorenko J et al (2019) Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat Commun 10(1):1–11. https://doi.org/10.1038/s41467-019-12653-0

    Article  CAS  Google Scholar 

  80. Mak TSH, Porsch RM, Choi SW et al (2017) Polygenic scores via penalized regression on summary statistics. Genet Epidemiol 41:469–480. https://doi.org/10.1002/GEPI.22050

    Article  PubMed  Google Scholar 

  81. Sanchez-Roige S, Palmer AA, Fontanillas P et al (2019) Genome-wide association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two population-based cohorts. Am J Psychiatr 176:107–118. https://doi.org/10.1176/appi.ajp.2018.18040369

    Article  PubMed  Google Scholar 

  82. Gelernter J, Sun N, Polimanti R et al (2019) Genome-wide association study of maximum habitual alcohol intake in >140,000 U.S. European and African American veterans yields novel risk loci. Biol Psychiatry 86:365–376. https://doi.org/10.1016/j.biopsych.2019.03.984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Barr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barr, P.B., Meyers, J.L. (2023). Genetics and Family History of Alcohol Use Disorders. In: Cyders, M.A. (eds) Translational Research Methods for Alcohol Use Disorders. Neuromethods, vol 201. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3267-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3267-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3266-6

  • Online ISBN: 978-1-0716-3267-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation