Inclusion Body Production in Fed-Batch and Continuous Cultivation

  • Protocol
  • First Online:
Inclusion Bodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2617))

Abstract

Various fermentation strategies in industrial biotechnology are applied to produce recombinant target proteins using Escherichia coli. These proteins are often expressed as inclusion bodies (IBs), resulting in a high purity, high stability, and high product titers. In state-of-the-art fed-batch processes, product formation takes place in a short period of time. Sterilization, cleaning, and biomass growth are time consuming steps and reduce the space-time yield. Thus, the interest in establishing continuous cultivations, facilitating higher space-time yields, has been increased in recent years. In this protocol, we provide information and a guide to set-up the production of recombinant proteins in fed-batch, as well as in chemostat continuous cultivations using E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27(3):297–306

    Article  CAS  Google Scholar 

  2. Walsh G (2010) Post-translational modifications of protein biopharmaceuticals. Drug Discov Today 15(17):773–780

    Article  CAS  Google Scholar 

  3. Manta B et al (2019) Disulfide bond formation in the periplasm of Escherichia coli. EcoSal Plus 8(2)

    Google Scholar 

  4. Missiakas D, Raina S (1997) Protein folding in the bacterial periplasm. J Bacteriol 179(8):2465–2471

    Article  CAS  Google Scholar 

  5. Wurm DJ et al (2017) Mechanistic platform knowledge of concomitant sugar uptake in Escherichia coli BL21(DE3) strains. Sci Rep 7:45072–45072

    Article  CAS  Google Scholar 

  6. Kopp J et al (2017) Impact of glycerol as carbon source onto specific sugar and inducer uptake rates and inclusion body productivity in E. coli BL21(DE3). Bioengineering (Basel, Switzerland) 5(1):1

    Google Scholar 

  7. Rosano GA-O, Morales ES, Ceccarelli EA-O. New tools for recombinant protein production in Escherichia coli: A 5-year update. (1469-896X (Electronic))

    Google Scholar 

  8. Kopp J et al (2020) Repetitive fed-batch: a promising process mode for biomanufacturing with E. coli. Front Bioeng Biotechnol 8:1312

    Article  Google Scholar 

  9. Singh A et al (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Factories 14(1):41

    Article  Google Scholar 

  10. Carrió MM, Villaverde A (2005) Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J Bacteriol 187(10):3599–3601

    Article  Google Scholar 

  11. García-Fruitós E (2010) Inclusion bodies: a new concept. Microb Cell Factories 9(1):80

    Article  Google Scholar 

  12. Slouka CA-OX et al. Perspectives of inclusion bodies for bio-based products: curse or blessing? (1432–0614 (Electronic))

    Google Scholar 

  13. Kittler S et al (2021) Cascaded processing enables continuous upstream processing with E. coli BL21(DE3). Sci Rep 11(1):11477

    Article  CAS  Google Scholar 

  14. Adamberg K, Valgepea K, Vilu R (2015) Advanced continuous cultivation methods for systems microbiology. Microbiology 161(9):1707–1719

    Article  CAS  Google Scholar 

  15. Peebo, K. and P. Neubauer, Application of continuous culture methods to recombinant protein production in microorganisms. Microorganisms, 2018. 6(3): p. 56

    Google Scholar 

  16. Kopp J et al. The Rocky Road from Fed-Batch to Continuous Processing with E. coli. (2296–4185 (Print))

    Google Scholar 

  17. Lee S et al (2015) Modernizing pharmaceutical manufacturing: from batch to continuous production. J Pharm Innov 10:191–199

    Article  Google Scholar 

  18. Curvers S et al. Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing. Part 1. Fermentation. (8756–7938 (Print))

    Google Scholar 

  19. Wurm DJ et al (2016) The E. coli pET expression system revisited-mechanistic correlation between glucose and lactose uptake. Appl Microbiol Biotechnol 100(20):8721–8729

    Article  CAS  Google Scholar 

  20. Neubauer P et al (1992) Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer. Appl Microbiol Biotechnol 36(6):739–744

    Article  CAS  Google Scholar 

  21. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70(4):939–1031

    Article  CAS  Google Scholar 

  22. Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57(3):543–594

    Article  CAS  Google Scholar 

  23. Lin E (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30(1):535–578

    Article  CAS  Google Scholar 

  24. Zwaig N, Kistler W, Lin E (1970) Glycerol kinase, the pacemaker for the dissimilation of glycerol in Escherichia coli. J Bacteriol 102(3):753–759

    Article  CAS  Google Scholar 

  25. Voegele RT, Sweet GD, Boos W (1993) Glycerol kinase of Escherichia coli is activated by interaction with the glycerol facilitator. J Bacteriol 175(4):1087–1094

    Article  CAS  Google Scholar 

  26. Swords WE. Chemical transformation of E. coli. (1064–3745 (Print))

    Google Scholar 

  27. Tomley FM. Transformation of E. coli. (1064–3745 (Print))

    Google Scholar 

  28. DeLisa MP et al (1999) Monitoring GFP-operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor. Biotechnol Bioeng 65(1):54–64

    Article  CAS  Google Scholar 

  29. Kopp J et al (2020) Development of a generic reversed-phase liquid chromatography method for protein quantification using analytical quality-by-design principles. J Pharm Biomed Anal 188:113412

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kittler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kittler, S. (2023). Inclusion Body Production in Fed-Batch and Continuous Cultivation. In: Kopp, J., Spadiut, O. (eds) Inclusion Bodies. Methods in Molecular Biology, vol 2617. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2930-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2930-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2929-1

  • Online ISBN: 978-1-0716-2930-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation