Rolling Circle Replication and Bypass of Damaged Nucleotides

  • Protocol
  • First Online:
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2615))

  • 1310 Accesses

Abstract

Faithful mitochondrial DNA (mtDNA) replication is critical for the proper function of the oxidative phosphorylation system. Problems with mtDNA maintenance, such as replication stalling upon encountering DNA damage, impair this vital function and can potentially lead to disease. An in vitro reconstituted mtDNA replication system can be used to investigate how the mtDNA replisome deals with, for example, oxidatively or UV-damaged DNA. In this chapter, we provide a detailed protocol on how to study the bypass of different types of DNA damage using a rolling circle replication assay. The assay takes advantage of purified recombinant proteins and can be adapted to the examination of various aspects of mtDNA maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214. https://doi.org/10.1096/fj.02-0752rev

    Article  CAS  PubMed  Google Scholar 

  2. Young MJ (2017) Off-target effects of drugs that disrupt human mitochondrial DNA maintenance. Front Mol Biosci 4:74. https://doi.org/10.3389/fmolb.2017.00074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Copeland WC (2012) Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol 47(1):64–74. https://doi.org/10.3109/10409238.2011.632763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. https://doi.org/10.1016/j.molcel.2010.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lim SE, Longley MJ, Copeland WC (1999) The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 274(53):38197–38203. https://doi.org/10.1074/jbc.274.53.38197

    Article  CAS  PubMed  Google Scholar 

  6. Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, Tariq M, Wanrooij S, Garrido N, Comi G, Morandi L, Santoro L, Toscano A, Fabrizi GM, Somer H, Croxen R, Beeson D, Poulton J, Suomalainen A, Jacobs HT, Zeviani M, Larsson C (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28(3):223–231. https://doi.org/10.1038/90058

    Article  CAS  PubMed  Google Scholar 

  7. Mignotte B, Barat M, Mounolou JC (1985) Characterization of a mitochondrial protein binding to single-stranded DNA. Nucleic Acids Res 13(5):1703–1716. https://doi.org/10.1093/nar/13.5.1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Graziewicz MA, Longley MJ, Copeland WC (2006) DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev 106(2):383–405. https://doi.org/10.1021/cr040463d

    Article  CAS  PubMed  Google Scholar 

  9. Kasiviswanathan R, Gustafson MA, Copeland WC, Meyer JN (2012) Human mitochondrial DNA polymerase gamma exhibits potential for bypass and mutagenesis at UV-induced cyclobutane thymine dimers. J Biol Chem 287(12):9222–9229. https://doi.org/10.1074/jbc.M111.306852

    Article  CAS  PubMed  Google Scholar 

  10. Kasiviswanathan R, Copeland WC (2011) Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase. J Biol Chem 286(36):31490–31500. https://doi.org/10.1074/jbc.M111.252460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Forslund JME, Pfeiffer A, Stojkovic G, Wanrooij PH, Wanrooij S (2018) The presence of rNTPs decreases the speed of mitochondrial DNA replication. PLoS Genet 14(3):e1007315. https://doi.org/10.1371/journal.pgen.1007315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wanrooij S, Fuste JM, Farge G, Shi Y, Gustafsson CM, Falkenberg M (2008) Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc Natl Acad Sci U S A 105(32):11122–11127. https://doi.org/10.1073/pnas.0805399105

    Article  PubMed  PubMed Central  Google Scholar 

  13. Korhonen JA, Pham XH, Pellegrini M, Falkenberg M (2004) Reconstitution of a minimal mtDNA replisome in vitro. EMBO J 23(12):2423–2429. https://doi.org/10.1038/sj.emboj.7600257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stojkovic G, Makarova AV, Wanrooij PH, Forslund J, Burgers PM, Wanrooij S (2016) Oxidative DNA damage stalls the human mitochondrial replisome. Sci Rep 6:28942. https://doi.org/10.1038/srep28942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Korhonen JA, Gaspari M, Falkenberg M (2003) TWINKLE has 5′ -> 3’ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 278(49):48627–48632. https://doi.org/10.1074/jbc.M306981200

    Article  CAS  PubMed  Google Scholar 

  16. Chan SS, Longley MJ, Copeland WC (2005) The common A467T mutation in the human mitochondrial DNA polymerase (POLG) compromises catalytic efficiency and interaction with the accessory subunit. J Biol Chem 280(36):31341–31346. https://doi.org/10.1074/jbc.M506762200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Andreas Berner for his technical input. We thank Prof. Peter Burgers for the experiments carried out in his laboratory (Washington University in St. Louis). This work was supported by the Knut and Alice Wallenberg Foundation, and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjoerd Wanrooij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Forslund, J.M.E., Stojkovič, G., Wanrooij, S. (2023). Rolling Circle Replication and Bypass of Damaged Nucleotides. In: Nicholls, T.J., Uhler, J.P., Falkenberg, M. (eds) Mitochondrial DNA. Methods in Molecular Biology, vol 2615. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2922-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2922-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2921-5

  • Online ISBN: 978-1-0716-2922-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation