Enhancers for Selective Targeting

  • Protocol
  • First Online:
Vectorology for Optogenetics and Chemogenetics

Part of the book series: Neuromethods ((NM,volume 195))

  • 434 Accesses

Abstract

Recombinant adeno-associated viruses can be coupled with short regulatory elements to restrict viral expression to specific cellular populations. These viral vectors can be used as tools for basic research to dissect many aspects of the biology of specific cellular subtypes in health and disease, and across species. A handful of enhancers have already been described in the nervous system, and recent studies suggest that transcriptomic and epigenetic data can be leveraged to systematize the discovery of novel elements to restrict viral expression to any cell type. However, a thorough characterization of the expression profile conferred by these short sequences is required to demonstrate their utility in the experimental context in which they will be ultimately used. Here we describe a complete guide to select, screen, and validate the expression profile of enhancers to target specific subtypes of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 109.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dimidschstein J et al (2016) A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci 19:1743–1749

    Article  CAS  Google Scholar 

  2. Vormstein-Schneider D, Lin JD et al (2020) Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nat Neurosci 23:1629–1636

    Article  CAS  Google Scholar 

  3. Bedbrook CN, Deverman BE, Gradinaru V (2018) Viral strategies for targeting the central and peripheral nervous systems. Annu Rev Neurosci 41:323–348

    Article  CAS  Google Scholar 

  4. Hrvatin S et al (2019) A scalable platform for the development of cell-type-specific viral drivers. elife 8:e48089

    Article  CAS  Google Scholar 

  5. Mich JK et al (2021) Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep 34(13):108754

    Article  CAS  Google Scholar 

  6. Mingozzi F et al (2003) Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest 11(9):1347–1356

    Article  Google Scholar 

  7. **ong W et al (2019) AAV cis-regulatory sequences are correlated with ocular toxicity. Proc Natl Acad Sci U S A 116(12):5785–5794

    Article  CAS  Google Scholar 

  8. Vesuna S et al (2020) Deep posteromedial cortical rhythm in dissociation. Nature 586:87–94

    Article  CAS  Google Scholar 

  9. Mo A et al (2015) Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86:1369–1384

    Article  CAS  Google Scholar 

  10. Gray SJ et al (2011) Production of recombinant adeno-associated viral vectors and use in in vitro and in vivo administration. Curr Protoc Neurosci 4:4.17

    Google Scholar 

  11. Fulco CP et al (2016) Systematic map** of functional enhancer-promoter connections with CRISPR interference. Science 354(6313):769–773

    Article  CAS  Google Scholar 

  12. Visel A et al (2007) VISTA enhancer browser–a database of tissue-specific human enhancers. Nucleic Acids Res 35:D88–D92

    Article  CAS  Google Scholar 

  13. Bejerano G et al (2004) Ultraconserved elements in the human genome. Science 304:1321–1325

    Article  CAS  Google Scholar 

  14. Dimitrieva S, Bucher P (2013) UCNEbase—a database of ultraconserved non-coding elements and genomic regulatory blocks. Nucleic Acids Res 41:D101–D109

    Article  CAS  Google Scholar 

  15. Andersson R et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461

    Article  CAS  Google Scholar 

  16. Dousse A, Junier T, Zdobnov EM (2016) CEGA—a catalog of conserved elements from genomic alignments. Nucleic Acids Res 44:D96–D100

    Article  CAS  Google Scholar 

  17. Dickel DE et al (2018) Ultraconserved enhancers are required for normal development. Cell 172:491–499

    Article  CAS  Google Scholar 

  18. Ron G et al (2017) Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains. Nat Commun 8:2237

    Article  Google Scholar 

  19. Huang J et al (2018) Dissecting super-enhancer hierarchy based on chromatin interactions. Nat Commun 9(1):943

    Article  Google Scholar 

  20. Tasic B et al (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19:335–346

    Article  CAS  Google Scholar 

  21. Saunders A et al (2018) Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174:1015–1030.e16

    Article  CAS  Google Scholar 

  22. Tremblay R, Lee S, Rudy B (2016) GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91:260–292

    Article  CAS  Google Scholar 

  23. Siepel A et al (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15(8):1034–1050

    Article  CAS  Google Scholar 

  24. Kent WJ et al (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006

    Article  CAS  Google Scholar 

  25. Buenrostro J et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    Article  CAS  Google Scholar 

  26. Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  Google Scholar 

  27. Johnson DS et al (2007) Genome-wide map** of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  CAS  Google Scholar 

  28. Mikkelsen T et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  CAS  Google Scholar 

  29. Spitz F, Furlong E (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626

    Article  CAS  Google Scholar 

  30. Tuteja G et al (2014) Automated discovery of tissue-targeting enhancers and transcription factors from binding motif and gene function data. PLoS Comput Biol 10(1):e1003449

    Article  Google Scholar 

  31. He HH et al (2010) Nucleosome dynamics define transcriptional enhancers. Nat Genet 42(4):343–347

    Article  CAS  Google Scholar 

  32. Fang R et al (2021) Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nat Commun 12:1337

    Article  CAS  Google Scholar 

  33. Feng J et al (2012) Identifying ChIP-seq enrichment using MACS. Nat Protoc 7(9):1728–1740

    Article  CAS  Google Scholar 

  34. Freese NH et al (2016) Integrated genome browser: visual analytics platform for genomics. Bioinformatics 32(14):2089–2095

    Article  CAS  Google Scholar 

  35. Jüttner J et al (2019) Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat Neurosci 22:1345–1356

    Article  Google Scholar 

  36. Blankvoort S, Witter MP, Noonan J, Cotney J, Kentros C (2018) Marked diversity of unique cortical enhancers enables neuron-specific tools by enhancer-driven gene expression. Curr Biol 28(13):2103–2114

    Article  CAS  Google Scholar 

  37. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18(1):80–86

    Article  CAS  Google Scholar 

  38. Powell SK, Rivera-Soto R, Gray SJ (2015) Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med 19(102):49–57

    Google Scholar 

  39. Chalfie M et al (1994) Green fluorescent protein as a marker for gene-expression. Science 263:802–805

    Article  CAS  Google Scholar 

  40. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  CAS  Google Scholar 

  41. Matz MV et al (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    Article  CAS  Google Scholar 

  42. Shaner NC et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  Google Scholar 

  43. Strack RL et al (2009) A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48:8279–8281

    Article  CAS  Google Scholar 

  44. Griesbeck O et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. J Biol Chem 276:29188–29194

    Article  CAS  Google Scholar 

  45. Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39:499–509

    Article  CAS  Google Scholar 

  46. Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623

    Article  CAS  Google Scholar 

  47. Fowler DK et al (2016) A MultiSite gateway toolkit for rapid cloning of vertebrate expression constructs with diverse research applications. PloS one 11(8):e0159277

    Article  Google Scholar 

  48. Chen TW et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  Google Scholar 

  49. Piatkevich KD et al (2018) A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat Chem Biol 14(4):352–360

    Article  CAS  Google Scholar 

  50. Marvin JS et al (2019) A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods 16:763–770

    Article  CAS  Google Scholar 

  51. Magnus CJ et al (2019) Ultrapotent chemogenetics for research and potential clinical applications. Science 364:6436

    Article  Google Scholar 

  52. Boyden ES et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  Google Scholar 

  53. Yizhar O et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363):171–178

    Article  CAS  Google Scholar 

  54. Graybuck LT et al (2021) Enhancer viruses for combinatorial cell-subclass-specific labeling. Neuron 109(9):1449–1464.e13

    Article  CAS  Google Scholar 

  55. Chen Q et al (2020) Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci 23:520–532

    Article  CAS  Google Scholar 

  56. Watakabe A et al (2015) Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res 93:144–157

    Article  Google Scholar 

  57. Chan KY et al (2017) Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20:1172–1179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordane Dimidschstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lin, J., Dimidschstein, J. (2023). Enhancers for Selective Targeting. In: Eldridge, M.A., Galvan, A. (eds) Vectorology for Optogenetics and Chemogenetics. Neuromethods, vol 195. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2918-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2918-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2917-8

  • Online ISBN: 978-1-0716-2918-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation