Unconfined Compression Experimental Protocol for Cartilage Explants and Hydrogel Constructs: From Sample Preparation to Mechanical Characterization

  • Protocol
  • First Online:
Cartilage Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2598))

  • 1622 Accesses

Abstract

Mechanical characterization of articular cartilage and cell-seeded hydrogel constructs is a challenging task due to the complex biphasic behavior of these materials. Here we describe a step-by-step unconfined compression testing protocol for inverse mechanical characterization of these materials from sample preparation to parameter identification. Examples from our ongoing experiments on alginate hydrogel constructs and preserved and damaged cartilage explants obtained from human hip samples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen NP, Foster RJ, Mow VC (1998) Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sports Phys Ther 28:203–215

    Article  CAS  PubMed  Google Scholar 

  2. Shefelbine SJ, Ma CB, Lee KY, Schrumpf MA, Patel P, Safran MR et al (2006) MRI analysis of in vivo meniscal and tibiofemoral kinematics in ACL- deficient and normal knees. J Orthop Res 24:1208–1217

    Article  PubMed  Google Scholar 

  3. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  CAS  PubMed  Google Scholar 

  4. Jacobi M, Villa V, Magnussen RA, Neyret P (2011) MACI-a new era? Sports Med Arthrosc Rehabil Ther Technol. https://doi.org/10.1186/1758-2555-3-10

  5. Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S (2013) Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C 33:4786–4794

    Article  CAS  Google Scholar 

  6. Ebrahimi M, Ojanen S, Mohammadi A, Finnilä MA, Joukainen A, Kröger H et al (2019) Elastic, viscoelastic and fibril-reinforced poroelastic material properties of healthy and osteoarthritic human tibial cartilage. Ann Biomed Eng 47:953–966

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koh YG, Lee JA, Kim YS, Lee HY, Kim HJ, Kang KT (2019) Optimal mechanical properties of a scaffold for cartilage regeneration using finite element analysis. J Tissue Eng. https://doi.org/10.1177/2041731419832133

  8. Mohammadi H, Mequanint K, Herzog W (2013) Computational aspects in mechanical modeling of the articular cartilage tissue. Proc Inst Mech Eng H 227:402–420

    Article  PubMed  Google Scholar 

  9. Marchiori G, Berni M, Boi M, Filardo G (2019) Cartilage mechanical tests: evolution of current standards for cartilage repair and tissue engineering: a literature review. Clin Biomech 68:58–72

    Article  Google Scholar 

  10. Evans S (2017) How can we measure the mechanical properties of soft tissues? In: Avril S, Evans S (eds) Material parameter identification and inverse problems in soft tissue biomechanics, CISM International Centre for Mechanical Sciences (Courses and Lectures). Springer, Cham

    Google Scholar 

  11. Nguyen VB, Wang CX, Thomas CR, Zhang Z (2009) Mechanical properties of single alginate microspheres determined by microcompression and finite element modelling. Chem Eng Sci 64:821–829

    Article  CAS  Google Scholar 

  12. Danso EK, Julkunen P, Korhonen RK (2018) Poisson’s ratio of bovine meniscus determined combining unconfined and confined compression. J Biomech 77:233–237

    Article  CAS  PubMed  Google Scholar 

  13. Olvera D, Daly A, Kelly DJ (2015) Mechanical testing of cartilage constructs. In: Doran P (ed) Cartilage tissue engineering. Humana Press, New York

    Google Scholar 

  14. DiSilvestro MR, Suh JK (2001) A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J Biomech 34:519–525

    Article  CAS  PubMed  Google Scholar 

  15. Wilson W, Van Donkelaar CC, Van Rietbergen B, Huiskes R (2005) A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech 38:1195–1204

    Article  CAS  PubMed  Google Scholar 

  16. Ateshian GA, Hung CT (2003) Functional properties of native articular cartilage. In: Guilak F, Butler DL, Goldstein SA, Mooney DJ (eds) Functional tissue engineering. Springer, New York

    Google Scholar 

  17. Patel JM, Wise BC, Bonnevie ED, Mauck RL (2019) A systematic review and guide to mechanical testing for articular cartilage tissue engineering. Tissue Eng Part C Methods 25:593–608

    Article  PubMed  PubMed Central  Google Scholar 

  18. Qi J, Hu Z, Song H, Chen B, **e D, Zhou L et al (2016) Cartilage storage at 4 C with regular culture medium replacement benefits chondrocyte viability of osteochondral grafts in vitro. Cell Tissue Bank 17:473–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Armstrong CG, Lai WM, Mow VC (1984) An analysis of the unconfined compression of articular cartilage. J Biomech Eng 106:165–173

    Article  CAS  PubMed  Google Scholar 

  20. Elahi SA, Tanska P, Mukherjee S, Korhonen RK, Geris L, Jonkers I (2021) Guide to mechanical characterization of articular cartilage and hydrogel constructs based on a systematic in silico parameter sensitivity analysis. J Mech Behav Biomed Mater 124:104795

    Article  CAS  PubMed  Google Scholar 

  21. Shepherd DET, Seedhom BB (1999) Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis 58:27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Marie Skłodowska-Curie Individual Fellowship (CREATION project: MSCA-IF-2019-893771) and KU Leuven/FWO Happy Joints project (C14/18/077 and G045320N). It is also part of the EOS excellence program Joint-Against OA (G0F8218N). The authors thank the KU Leuven core facility for biomechanical experimentation (FIBEr) and Mr. Wouter Willekens for their support in the experiments and analyzing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Elahi .

Editor information

Editors and Affiliations

Supplementary Materials

Supplementary Materials

Supplementary material to this chapter contains the MATLAB scripts for image processing, and parameter fitting and can be found together with the guides to run the scripts on https://bme-soft-tissue.pages.gitlab.kuleuven.be/unconfined-compression/.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Elahi, S.A., Castro-Viñuelas, R., Govaerts, A., Lories, R., Famaey, N., Jonkers, I. (2023). Unconfined Compression Experimental Protocol for Cartilage Explants and Hydrogel Constructs: From Sample Preparation to Mechanical Characterization. In: Stoddart, M.J., Della Bella, E., Armiento, A.R. (eds) Cartilage Tissue Engineering. Methods in Molecular Biology, vol 2598. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2839-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2839-3_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2838-6

  • Online ISBN: 978-1-0716-2839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation