Experimental Models of Mouse and Human Hematopoietic Stem Cell Transplantation

  • Protocol
  • First Online:
Hematopoietic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2567))

Abstract

Experimental hematopoietic stem cell transplantation (HSCT) is an invaluable tool in determining the function and characteristics of hematopoietic stem cells (HSC) from experimental mouse and human donor groups. These groups could include, but are not limited to, genetically altered populations (gene knockout/knockin models), ex vivo manipulated cell populations, or in vivo modulated cell populations. The basic fundamentals of this process involve taking cells from a mouse/human donor source and putting them into another mouse (recipient) after preconditioning of the recipient with either total body irradiation (TBI) for mouse donor cells or into sublethally irradiated immune-deficient mice for human donor cells. Then, at pre-determined time points post-transplant, sampling a small amount of peripheral blood (PB) and at the termination of the evalaution, bone marrow (BM) to determine donor contribution and function by phenotypic analysis. Exploiting the congenic mouse strains of C57BL/6 (CD45.1 CD45.2+), BoyJ (CD45.1+ CD45.2), and their F1-crossed hybrid C57BL/6 × BoyJ (CD45.1+ CD45.2+), we are able to quantify donor, competitor, and recipient mouse cell contributions to the engraftment state. Human donor cell engraftment (e.g., from the cord blood [CB], mobilized PB, or BM) is assessed by human cell phenoty** in sublethally irradiated immune-deficient mouse recipients (e.g., NOD scid gamma mice that are deficient in B cells, T cells, and natural killer cells and have defective dendritic cells and macrophages). Engraftment of cells from primary mouse recipients into secondary mice allows for an estimation of the self-renewal capacity of the original donor HSC. This chapter outlines concepts, methods, and techniques for mouse and human cell models of HSCT and for assessment of donor cells collected and processed in hypoxia versus ambient air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334

    Article  CAS  Google Scholar 

  2. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park SY, Lu J, Protopopov A, Silberstein LE (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15:533–543

    Article  CAS  Google Scholar 

  3. Cooper S, Broxmeyer HE (1991) Clonogenic methods in vitro for the enumeration of granulocyte-macrophage progenitor cells (CFU-GM) in human bone marrow and mouse bone marrow and spleen. J Tissue Cult Methods 13:77–82

    Article  Google Scholar 

  4. Hoggatt J, Tate TA, Pelus LM (2014) Hematopoietic stem and progenitor mobilization in mice. In: Hematopoietic stem cell protocols, methods in molecular biology, vol 1185. Springer, New York

    Google Scholar 

  5. Broxmeyer HE (1983) Colony assays of hematopoietic progenitor cells and correlations to clinical situations. CRC Crit Rev Oncol 1:227–257

    Article  Google Scholar 

  6. Broxmeyer HE, Srour E, Orschell C, Ingram DA, Cooper S, Plett PA, Mead LE, Yoder MC (2006) Cord blood-derived stem and progenitor cells. Methods Enzymol 419:439–473

    Article  CAS  Google Scholar 

  7. Broxmeyer HE, Cooper S, Lasky LA, De Sauvage F (2005) Identification of a massive reserve of hematopoietic progenitors in mice. Stem Cells Dev 14:105–110

    Article  Google Scholar 

  8. Broxmeyer HE, Hangoc G, Cooper S, Anderson D, Cosman D, Lyman SD, Williams DE (1991) Influence of murine mast cell growth factor (c-kit ligand) on colony formation by mouse marrow hematopoietic progenitor cells. Exp Hematol 19:143–146

    CAS  PubMed  Google Scholar 

  9. Broxmeyer HE, Cooper S, Lu L, Hangoc G, Anderson D, Cosman D, Lyman SD, Williams DE (1991) Effect of murine mast cell growth factor (c-kit proto-oncogene ligand) on colony formation by human marrow hematopoietic progenitor cells. Blood 77:2142–2149

    Article  CAS  Google Scholar 

  10. Broxmeyer HE, Lu L, Cooper S, Ruggieri L, Li ZH, Lyman SD (1995) Flt3 ligand stimulates/costimulates the growth of myeloid stem/progenitor cells. Exp Hematol 23:1121–1129

    CAS  PubMed  Google Scholar 

  11. Mantel CR, O'Leary HA, Chitteti BR, Huang X, Cooper S, Hangoc G, Brustovetsky N, Srour EF, Lee MR, Messina-Graham S, Haas DM, Falah N, Kapur R, Pelus LM, Bardeesy N, Fitamant J, Ivan M, Kim KS, Broxmeyer HE (2015) Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161:1553–1565

    Article  CAS  Google Scholar 

  12. Zhang J, Ghosh J, Mohamad SF, Zhang C, Huang X, Capitano ML, Gunawan AM, Cooper S, Guo B, Cai Q, Broxmeyer HE, Srour EF (2019) CD166 engagement augments mouse and human hematopoietic progenitor function via activation of stemness and cell cycle pathways. Stem Cells 37:1319–1330

    Article  CAS  Google Scholar 

  13. Carow CE, Hangoc G, Cooper SH, Williams DE, Broxmeyer HE (1991) Mast cell growth factor (c-kit ligand) supports the growth of human multipotential progenitor cells with a high replating potential. Blood 78:2216–2221

    Article  CAS  Google Scholar 

  14. Carow CE, Hangoc G, Broxmeyer HE (1993) Human multipotential progenitor cells (CFU-GEMM) have extensive replating capacity for secondary CFU-GEMM: an effect enhanced by cord blood plasma. Blood 81:942–949

    Article  CAS  Google Scholar 

  15. **ao M, Broxmeyer HE, Horie M, Grigsby S, Lu L (1994) Extensive proliferative capacity of single isolated CD34 human cord blood cells in suspension culture. Blood Cells 20:455–466

    CAS  PubMed  Google Scholar 

  16. Woehrer S, Miller CL, Eaves CJ (2013) Long-term culture-initiating cell assay for mouse cells. Methods Mol Biol 946:257–266

    Article  CAS  Google Scholar 

  17. Liu M, Miller CL, Eaves CJ (2013) Human long-term culture initiating cell assay. Methods Mol Biol 946:241–256

    Article  CAS  Google Scholar 

  18. Doulatov S, Notta F, Laurenti E, Dick JE (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10:120–136

    Article  CAS  Google Scholar 

  19. van Galen P, Kreso A, Mbong N, Kent DG, Fitzmaurice T, Chambers JE, **e S, Laurenti E, Hermans K, Eppert K, Marciniak SJ, Goodall JC, Green AR, Wouters BG, Dick JE (2014) The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature 510:268–272

    Article  Google Scholar 

  20. Chen Y, Yao C, Teng Y, Jiang R, Huang X, Liu S, Wan J, Broxmeyer HE, Guo B (2019) Phorbol ester induced ex vivo expansion of rigorously-defined phenotypic but not functional human cord blood hematopoietic stem cells: a cautionary tale demonstrating that phenotype does not always recapitulate stem cell function. Leukemia 33:2962–2966

    Article  Google Scholar 

  21. Capitano ML, Griesenauer B, Guo B, Cooper S, Paczesny S, Broxmeyer HE (2020) The IL-33 receptor/ST2 acts as a positive regulator of functional mouse bone marrow hematopoietic stem and progenitor cells. Blood Cells Mol Dis. (in press)

    Google Scholar 

  22. Hoggatt J, Singh P, Sampath J, Pelus LM (2009) Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113:5444–5455

    Article  CAS  Google Scholar 

  23. Broxmeyer HE, Christopherson K, Hangoc G, Cooper S, Mantel C, Renukaradhya GJ, Brutkiewicz RR (2012) CD1d expression on and regulation of murine hematopoietic stem and progenitor cells. Blood 119:5731–5741

    Article  CAS  Google Scholar 

  24. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318

    Article  CAS  Google Scholar 

  25. Christopherson KW II, Hangoc G, Mantel CR, Broxmeyer HE (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305:1000–1003

    Article  CAS  Google Scholar 

  26. Broxmeyer HE, Hoggatt J, O'Leary HA, Mantel C, Chitteti BR, Cooper S, Messina-Graham S, Hangoc G, Farag S, Rohrabaugh SL, Ou X, Speth J, Pelus LM, Srour EF, Campbell TB (2012) Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med 18:1786–1796

    Article  CAS  Google Scholar 

  27. Broxmeyer HE, Pelus LM (2014) Inhibition of DPP4/CD26 and dmPGE2 treatment enhances engraftment of mouse bone marrow hematopoietic stem cells. Blood Cells Mol Dis 53:34–38

    Article  CAS  Google Scholar 

  28. Vormoor J, Lapidot T, Pflumio F, Risdon G, Patterson B, Broxmeyer HE, Dick JE (1994) Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood 83:2489–2497

    Article  CAS  Google Scholar 

  29. Broxmeyer HE, Lee MR, Hangoc G, Cooper S, Prasain N, Kim YJ, Mallett C, Ye Z, Witting S, Cornetta K, Cheng L, Yoder MC (2011) Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood 117:4773–4777

    Article  CAS  Google Scholar 

  30. Guo B, Huang X, Cooper S, Broxmeyer HE (2017) Glucocorticoid hormone-induced chromatin remodeling enhances human hematopoietic stem cell homing and engraftment. Nat Med 23:424–428

    Article  CAS  Google Scholar 

  31. Guo B, Huang X, Lee MR, Lee SA, Broxmeyer HE (2018) Antagonism of PPAR-γ signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis. Nat Med 24:360–367

    Article  CAS  Google Scholar 

  32. Capitano ML, Mor-Vaknin N, Saha AK, Cooper S, Legendre M, Guo H, Contreras-Galindo R, Kappes F, Sartor MA, Lee CT, Huang X, Markovitz DM, Broxmeyer HE (2019) Secreted nuclear protein DEK regulates hematopoiesis through CXCR2 signaling. J Clin Invest 129:2555–2570

    Article  Google Scholar 

  33. Huang X, Guo B, Liu S, Wan J, Broxmeyer HE (2018) Neutralizing negative epigenetic regulation by HDAC5 enhances human haematopoietic stem cell homing and engraftment. Nat Commun 16:274

    Google Scholar 

  34. Xu D, Tang M, Capitano ML, Guo B, Liu S, Wan J, Broxmeyer HE, Huang XX (2020) Pharmacological activation of nitric oxide signaling promotes human hematopoietic stem cell homing and engraftment. Leukemia 35:229

    Article  Google Scholar 

  35. Capitano ML, Broxmeyer HE (2016) “CXCL12/SDF-1 and hematopoiesis” reference module in biomedical sciences. In: Bradshaw RA, Stahl PD (eds) Encyclopedia of cell biology, vol 3. Elsevier Publishing, Waltham/Oxford, pp 624–631

    Chapter  Google Scholar 

  36. de Parseval A, Ngo S, Sun P, Elder JH (2004) Factors that increase the effective concentration of CXCR4 dictate feline immunodeficiency virus tropism and kinetics of replication. J Virol 78:9132–9143

    Article  Google Scholar 

  37. Bonnefoix T, Callanan M (2010) Accurate hematopoietic stem cell frequency estimates by fitting multicell Poisson models substituting to the single-hit Poisson model in limiting dilution transplantation assays. Blood 116:2472–2475

    Article  CAS  Google Scholar 

  38. Huang X, Trinh T, Aljoufi A, Broxmeyer HE (2018) Hypoxia signaling pathway in stem cell regulation: good and evil. Curr Stem Cell Rep 4:149–157

    Article  CAS  Google Scholar 

  39. Ploemacher RE, van der Sluijs JP, van Beurden CA, Baert MR, Chan PL (1991) Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 78:2527–2533

    Article  CAS  Google Scholar 

  40. Szilvassy SJ, Humphries RK, Lansdorp PM, Eaves AC, Eaves CJ (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci U S A 87:8736–8740

    Article  CAS  Google Scholar 

  41. Wang JC, Doedens M, Dick JE (1997) Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 89:3919–3924

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott H. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cooper, S.H., Capitano, M.L., Broxmeyer, H.E. (2023). Experimental Models of Mouse and Human Hematopoietic Stem Cell Transplantation. In: Pelus, L.M., Hoggatt, J. (eds) Hematopoietic Stem Cells. Methods in Molecular Biology, vol 2567. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2679-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2679-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2678-8

  • Online ISBN: 978-1-0716-2679-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation