An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates

  • Protocol
  • First Online:
Phase-Separated Biomolecular Condensates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2563))

Abstract

Cellular organization is determined by a combination of membrane-bound and membrane-less biomolecular assemblies that range from clusters of tens of molecules to micrometer-sized cellular bodies. Over the last decade, membrane-less assemblies have come to be referred to as biomolecular condensates, reflecting their ability to condense specific molecules with respect to the remainder of the cell. In many cases, the physics of phase transitions provides a conceptual framework and a mathematical toolkit to describe the assembly, maintenance, and dissolution of biomolecular condensates. Among the various quantitative and qualitative models applied to understand intracellular phase transitions, the stickers-and-spacers framework offers an intuitive yet rigorous means to map biomolecular sequences and structure to the driving forces needed for higher-order assembly. This chapter introduces the fundamental concepts behind the stickers-and-spacers model, considers its application to different biological systems, and discusses limitations and misconceptions around the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science

    Google Scholar 

  2. Hyman AA, Weber CA, Jülicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58

    Article  CAS  PubMed  Google Scholar 

  3. Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357. https://doi.org/10.1126/science.aaf4382

  5. Lyon AS, Peeples WB, Rosen MK (2020) A framework for understanding the functions of biomolecular condensates across scales. Nat Rev Mol Cell Biol:1–21

    Google Scholar 

  6. Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    Article  CAS  PubMed  Google Scholar 

  7. Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cougot N, Babajko S, Séraphin B (2004) Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cotto J, Fox S, Morimoto R (1997) HSF1 granules: a novel stress-induced nuclear compartment of human cells. J Cell Sci 110(Pt 23):2925–2934

    Article  CAS  PubMed  Google Scholar 

  10. Brangwynne CP, Tompa P, Pappu RV (2015) Polymer physics of intracellular phase transitions. Nat Phys 11:899–904

    Article  CAS  Google Scholar 

  11. Dignon GL, Best RB, Mittal J (2020) Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu Rev Phys Chem 71:53–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berry J, Brangwynne CP, Haataja M (2018) Physical principles of intracellular organization via active and passive phase transitions. Rep Prog Phys 81:046601

    Article  PubMed  Google Scholar 

  13. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Juelicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732

    Article  CAS  PubMed  Google Scholar 

  14. Li P, Banjade S, Cheng H-C, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang Q-X, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pappu RV, Wang X, Vitalis A, Crick SL (2008) A polymer physics perspective on driving forces and mechanisms for protein aggregation – highlight issue: protein folding. Arch Biochem Biophys 469:132–141

    Article  CAS  PubMed  Google Scholar 

  16. Riback JA, Zhu L, Ferrolino MC, Tolbert M, Mitrea DM, Sanders DW, Wei M-T, Kriwacki RW, Brangwynne CP (2020) Composition-dependent thermodynamics of intracellular phase separation. Nature 581:209–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Riback JA, Katanski CD, Kear-Scott JL, Pilipenko EV, Rojek AE, Sosnick TR, Drummond DA (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168:1028–1040.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57:936–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martin EW, Holehouse AS, Peran I, Farag M, Incicco JJ, Bremer A, Grace CR, Soranno A, Pappu RV, Mittag T (2020) Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367:694–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin Y-H, Forman-Kay JD, Chan HS (2016) Sequence-specific polyampholyte phase separation in membraneless organelles. Phys Rev Lett 117:178101

    Article  PubMed  Google Scholar 

  23. Wang J, Choi J-M, Holehouse AS, Lee HO, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu RV, Alberti S, Hyman AA (2018) A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174:688–699.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Banerjee PR, Milin AN, Moosa MM, Onuchic PL, Deniz AA (2017) Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew Chem Int Ed Engl 56:11354–11359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dignon GL, Zheng W, Best RB, Kim YC, Mittal J (2018) Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc Natl Acad Sci U S A 115:9929–9934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Narayanan A, Meriin A, Andrews JO, Spille J-H, Sherman MY, Cisse II (2019) A first order phase transition mechanism underlies protein aggregation in mammalian cells. elife 8. https://doi.org/10.7554/eLife.39695

  27. Shrinivas K, Sabari BR, Coffey EL, Klein IA, Boija A, Zamudio AV, Schuijers J, Hannett NM, Sharp PA, Young RA, Chakraborty AK (2019) Enhancer features that drive formation of transcriptional condensates. Mol Cell 75:549–561.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Henninger JE, Oksuz O, Shrinivas K, Sagi I, LeRoy G, Zheng MM, Andrews JO, Zamudio AV, Lazaris C, Hannett NM, Lee TI, Sharp PA, Cissé II, Chakraborty AK, Young RA (2021) RNA-mediated feedback control of transcriptional condensates. Cell 184:207–225.e24

    Article  CAS  PubMed  Google Scholar 

  29. Martin EW, Harmon TS, Hopkins JB, Chakravarthy S, Incicco JJ, Schuck P, Soranno A, Mittag T (2021) A multi-step nucleation process determines the kinetics of prion-like domain phase separation. Nat Commun 12:1–12

    Article  Google Scholar 

  30. Shimobayashi SF, Ronceray P, Sanders DW, Haataja MP, Brangwynne CP (2021) Nucleation landscape of biomolecular condensates. Nature 599:503–506

    Article  CAS  PubMed  Google Scholar 

  31. Fritsch AW, Diaz-Delgadillo AF, Adame-Arana O, Hoege C, Mittasch M, Kreysing M, Leaver M, Hyman AA, Jülicher F, Weber CA (2021) Local thermodynamics govern formation and dissolution of Caenorhabditis elegans P granule condensates. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2102772118

  32. Emenecker RJ, Holehouse AS, Strader LC (2021) Biological phase separation and biomolecular condensates in plants. Annu Rev Plant Biol. https://doi.org/https://doi.org/10.1146/annurev-arplant-081720-015238

  33. Posey AE, Holehouse AS, Pappu RV (2018) Phase separation of intrinsically disordered proteins. Methods Enzymol 611:1–30

    Article  CAS  PubMed  Google Scholar 

  34. Choi J-M, Holehouse AS, Pappu RV (2020) Physical principles underlying the complex biology of intracellular phase transitions. Annu Rev Biophys 49:107–133

    Article  CAS  PubMed  Google Scholar 

  35. Lin Y-H, Forman-Kay JD, Chan HS (2018) Theories for sequence-dependent phase behaviors of biomolecular condensates. Biochemistry 57:2499–2508

    Article  CAS  PubMed  Google Scholar 

  36. Wei M-T, Elbaum-Garfinkle S, Holehouse AS, Chen CC-H, Feric M, Arnold CB, Priestley RD, Pappu RV, Brangwynne CP (2017) Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat Chem 9:1118–1125

    Article  CAS  PubMed  Google Scholar 

  37. Deviri D, Safran SA (2021) Physical theory of biological noise buffering by multicomponent phase separation. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2100099118

  38. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, N.Y

    Google Scholar 

  39. Chang L-W, Lytle TK, Radhakrishna M, Madinya JJ, Vélez J, Sing CE, Perry SL (2017) Sequence and entropy-based control of complex coacervates. Nat Commun 8:1273

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kumar R, Fredrickson GH (2009) Theory of polyzwitterion conformations. J Chem Phys 131:104901

    Article  Google Scholar 

  41. McCarty J, Delaney KT, Danielsen SPO, Fredrickson GH, Shea J-E (2019) Complete phase diagram for liquid–liquid phase separation of intrinsically disordered proteins. J Phys Chem Lett 10:1644–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perry SL, Sing CE (2015) PRISM-based theory of complex coacervation: excluded volume versus chain correlation. Macromolecules 48:5040–5053

    Article  CAS  Google Scholar 

  43. Holehouse AS, Pappu RV (2018) Functional implications of intracellular phase transitions. Biochemistry 57:2415–2423

    Article  CAS  PubMed  Google Scholar 

  44. Choi J-M, Dar F, Pappu RV (2019) LASSI: a lattice model for simulating phase transitions of multivalent proteins. PLoS Comput Biol 15:e1007028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cates ME, Witten TA (1986) Chain conformation and solubility of associating polymers. Macromolecules 19:732–739

    Article  CAS  Google Scholar 

  46. Semenov AN, Rubinstein M (1998) Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31:1373–1385

    Article  CAS  Google Scholar 

  47. Rubinstein M, Semenov AN (1998) Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 31:1386–1397

    Article  CAS  Google Scholar 

  48. Yang Y, Jones HB, Dao TP, Castañeda CA (2019) Single amino acid substitutions in stickers, but not spacers, substantially alter UBQLN2 phase transitions and dense phase material properties. J Phys Chem B 123:3618–3629

    Article  CAS  PubMed  Google Scholar 

  49. Hesgrove CS, Nguyen KH, Biswas S, Childs CA, Shraddha KC, Medina BX, Alvarado V, Sukenik S, Yu F, Malferrari M, Francia F, Venturoli G, Martin EW, Holehouse AS, Boothby TC (2021) Molecular Swiss Army Knives: Tardigrade CAHS Proteins Mediate Desiccation Tolerance Through Multiple Mechanisms. bioRxiv:2021.08.16.456555

    Google Scholar 

  50. Ruff KM, Choi YH, Cox D, Ormsby AR, Myung Y, Ascher DB, Radford SE, Pappu RV, Hatters DM (2021) Sequence grammar underlying unfolding and phase separation of globular proteins. bioRxiv:2021.08.20.457073

    Google Scholar 

  51. Liu J, Zhorabek F, Dai X, Huang J, Chau Y (2021) Minimalist design of polymer-oligopeptide hybrid as intrinsically disordered protein-mimicking scaffold for artificial membraneless organelle. ar**v [cond-mat.soft]

    Google Scholar 

  52. Harmon TS, Holehouse AS, Rosen MK, Pappu RV (2017) Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife:6. https://doi.org/10.7554/eLife.30294

  53. Pantoja-Uceda D, Stuani C, Laurents DV, McDermott AE, Buratti E, Mompeán M (2021) Phe-Gly motifs drive fibrillization of TDP-43’s prion-like domain condensates. PLoS Biol 19:e3001198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roden C, Dai Y, Seim I, Lee M, Sealfon R, McLaughlin G, Boerneke M, Iserman C, Wey SA, Ekena JL, Troyanskaya OG, Weeks K, You L, Chilkoti A, Gladfelter A (2021) Double-stranded RNA drives SARS-CoV-2 nucleocapsid protein to undergo phase separation at specific temperatures. bioRxiv:2021.06.14.448452

    Google Scholar 

  55. Alshareedah I, Moosa MM, Pham M, Potoyan DA, Banerjee PR (2021) Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Nat Commun 12:6620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rhine K, Makurath MA, Liu J, Skanchy S, Lopez C, Catalan KF, Ma Y, Fare CM, Shorter J, Ha T, Chemla YR, Myong S (2020) ALS/FTLD-linked mutations in FUS glycine residues cause accelerated gelation and reduced interactions with wild-type FUS. Mol Cell 80:666–681.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bremer A, Farag M, Borcherds WM, Peran I, Martin EW, Pappu RV, Mittag T (2021) Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat Chem:1–12

    Google Scholar 

  58. Abbas M, Lipiński WP, Nakashima KK, Huck WTS, Spruijt E (2021) A short peptide synthon for liquid-liquid phase separation. Nat Chem 13:1046–1054

    Article  CAS  PubMed  Google Scholar 

  59. Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A, Ali R, Yunus AA, Liu DR, Pappu RV, Rosen MK (2016) Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol Cell 63:72–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Teixeira PIC, Tavares JM (2017) Phase behaviour of pure and mixed patchy colloids — theory and simulation. Curr Opin Colloid Interface Sci 30:16–24

    Article  CAS  Google Scholar 

  61. Sanders DW, Kedersha N, Lee DSW, Strom AR, Drake V, Riback JA, Bracha D, Eeftens JM, Iwanicki A, Wang A, Wei M-T, Whitney G, Lyons SM, Anderson P, Jacobs WM, Ivanov P, Brangwynne CP (2020) Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 181:306–324.e28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cai J, Townsend JP, Dodson TC, Heiney PA, Sweeney AM (2017) Eye patches: protein assembly of index-gradient squid lenses. Science 357:564–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Groot RD, Bot A, Agterof WGM (1996) Molecular theory of strain hardening of a polymer gel: application to gelatin. J Chem Phys 104:9202–9219

    Article  CAS  Google Scholar 

  64. Bug ALR, Cates ME, Safran SA, Witten TA (1987) Theory of size distribution of associating polymer aggregates. I Spherical aggregates J Chem Phys 87:1824–1833

    CAS  Google Scholar 

  65. Groot RD, Agterof WGM (1994) Monte Carlo study of associative polymer networks. I Equation of state J Chem Phys 100:1649–1656

    CAS  Google Scholar 

  66. Groot RD, Agterof WGM (1994) Monte Carlo study of associative polymer networks. II Rheologic aspects J Chem Phys 100:1657–1664

    CAS  Google Scholar 

  67. Semenov AN, Joanny J-F, Khokhlov AR (1995) Associating polymers: equilibrium and linear viscoelasticity. Macromolecules 28:1066–1075

    Article  CAS  Google Scholar 

  68. Santore MM, Russel WB, Prud’homme RK (1989) A two-component model for the phase behavior of dispersions containing associative polymer. Macromolecules 22:1317–1325

    Article  CAS  Google Scholar 

  69. Santore MM, Russel WB, Prud’homme RK (1990) A one-component model for the phase behavior of dispersions containing associative polymers. Macromolecules 23:3821–3832

    Article  CAS  Google Scholar 

  70. Tanaka F, Ishida M (1999) Thermoreversible gelation with two-component networks. Macromolecules 32:1271–1283

    Article  CAS  Google Scholar 

  71. Choi J-M, Hyman AA, Pappu RV (2020) Generalized models for bond percolation transitions of associative polymers. Phys Rev E 102:042403

    Article  CAS  PubMed  Google Scholar 

  72. Ranganathan S, Shakhnovich EI (2020) Dynamic metastable long-living droplets formed by sticker-spacer proteins. Elife:9. https://doi.org/10.7554/eLife.56159

  73. Lin Y, Currie SL, Rosen MK (2017) Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J Biol Chem. https://doi.org/10.1074/jbc.M117.800466

  74. Flory PJ (1941) Molecular size distribution in three dimensional polymers. I. Gelation1. J Am Chem Soc 63:3083–3090

    Article  CAS  Google Scholar 

  75. Stockmayer WH (1943) Theory of molecular size distribution and gel formation in branched-chain polymers. J Chem Phys 11:45–55

    Article  CAS  Google Scholar 

  76. Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, Parker R, Rosen MK (2016) Compositional control of phase-separated cellular bodies. Cell 166:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Groot RD, Agterof WGM (1995) Dynamic viscoelastic modulus of associative polymer networks: off-lattice simulations, theory and comparison to experiments. Macromolecules 28:6284–6295

    Article  CAS  Google Scholar 

  78. Nardin C, Hirt T, Leukel J, Meier W (2000) Polymerized ABA triblock copolymer vesicles. Langmuir 16:1035–1041

    Article  CAS  Google Scholar 

  79. Ruff KM, Pappu RV, Holehouse AS (2019) Conformational preferences and phase behavior of intrinsically disordered low complexity sequences: insights from multiscale simulations. Curr Opin Struct Biol 56:1–10

    Article  CAS  PubMed  Google Scholar 

  80. Harmon TS, Holehouse AS, Pappu RV (2018) Differential solvation of intrinsically disordered linkers drives the formation of spatially organized droplets in ternary systems of linear multivalent proteins. New J Phys 20:045002

    Article  Google Scholar 

  81. Fei J, Jadaliha M, Harmon TS, Li ITS, Hua B, Hao Q, Holehouse AS, Reyer M, Sun Q, Freier SM, Pappu RV, Prasanth KV, Ha T (2017) Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J Cell Sci 130:4180–4192

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Guillén-Boixet J, Kopach A, Holehouse AS, Wittmann S, Jahnel M, Schlüßler R, Kim K, Trussina IREA, Wang J, Mateju D, Poser I, Maharana S, Ruer-Gruß M, Richter D, Zhang X, Chang Y-T, Guck J, Honigmann A, Mahamid J, Hyman AA, Pappu RV, Alberti S, Franzmann TM (2020) RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181:346–361.e17

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, Ward MD, Zimmerman MI, Vithani N, Griffith D, Wagoner JA, Bowman GR, Hall KB, Soranno A, Holehouse AS (2021) The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat Commun 12:1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Boeynaems S, Holehouse AS, Weinhardt V, Kovacs D, Van Lindt J, Larabell C, Van Den Bosch L, Das R, Tompa PS, Pappu RV, Gitler AD (2019) Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties. Proc Natl Acad Sci U S A 116:7889–7898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Weiner BG, Meir Y, Wingreen NS (2021) Sequence dependence of biomolecular phase separation. bioRxiv:2020.09.24.312330

    Google Scholar 

  86. Zhang Y, Xu B, Weiner BG, Meir Y, Wingreen NS (2021) Decoding the physical principles of two-component biomolecular phase separation. elife 10. https://doi.org/10.7554/eLife.62403

  87. Holehouse AS, Ginell GM, Griffith D, Böke E (2021) Clustering of aromatic residues in prion-like domains can tune the formation, state, and organization of biomolecular condensates. Biochemistry 60:3566–3581

    Article  CAS  PubMed  Google Scholar 

  88. Rana U, Brangwynne CP, Panagiotopoulos AZ (2021) Phase separation vs aggregation behavior for model disordered proteins. J Chem Phys 155:125101

    Article  CAS  PubMed  Google Scholar 

  89. Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    Article  CAS  PubMed  Google Scholar 

  90. Yue K, Fiebig KM, Thomas PD, Chan HS, Shakhnovich EI, Dill KA (1995) A test of lattice protein folding algorithms. Proc Natl Acad Sci U S A 92:325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dill KA, Bromberg S, Yue K, Fiebig KM, Yee DP, Thomas PD, Chan HS (1995) Principles of protein folding--a perspective from simple exact models. Protein Sci 4:561–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Abkevich VI, Gutin AM, Shakhnovich EI (1994) Specific nucleus as the transition state for protein folding: evidence from the lattice model. Biochemistry 33:10026–10036

    Article  CAS  PubMed  Google Scholar 

  93. Dignon GL, Zheng W, Mittal J (2019) Simulation methods for liquid–liquid phase separation of disordered proteins. Curr Opin Chem Eng 23:92–98

    Article  PubMed  PubMed Central  Google Scholar 

  94. Joseph JA, Reinhardt A, Aguirre A, Chew PY, Russell KO, Espinosa JR, Garaizar A, Collepardo-Guevara R (2021) Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nature Computational Science 1:732–743

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tesei G, Schulze TK, Crehuet R, Lindorff-Larsen K (2021) Accurate model of liquid–liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc Natl Acad Sci U S A:118. https://doi.org/10.1073/pnas.2111696118

  96. Martin EW, Holehouse AS (2020) Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg Top Life Sci 4:307–329

    Article  CAS  PubMed  Google Scholar 

  97. Kato M, Han TW, **e S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Han TW, Kato M, **e S, Wu LC, Mirzaei H, Pei J, Chen M, **e Y, Allen J, **ao G, McKnight SL (2012) Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149:768–779

    Article  CAS  PubMed  Google Scholar 

  99. Frey S, Richter RP, Görlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314:815–817

    Article  CAS  PubMed  Google Scholar 

  100. Frey S, Görlich D (2007) A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130:512–523

    Article  CAS  PubMed  Google Scholar 

  101. Yoshizawa T, Ali R, Jiou J, Fung HYJ, Burke KA, Kim SJ, Lin Y, Peeples WB, Saltzberg D, Soniat M, Baumhardt JM, Oldenbourg R, Sali A, Fawzi NL, Rosen MK, Chook YM (2018) Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173:693–705.e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hofweber M, Hutten S, Bourgeois B, Spreitzer E, Niedner-Boblenz A, Schifferer M, Ruepp M-D, Simons M, Niessing D, Madl T, Dormann D (2018) Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173:706–719.e13

    Article  CAS  PubMed  Google Scholar 

  103. Qamar S, Wang G, Randle SJ, Ruggeri FS, Varela JA, Lin JQ, Phillips EC, Miyashita A, Williams D, Ströhl F, Meadows W, Ferry R, Dardov VJ, Tartaglia GG, Farrer LA, Kaminski Schierle GS, Kaminski CF, Holt CE, Fraser PE, Schmitt-Ulms G, Klenerman D, Knowles T, Vendruscolo M, St George-Hyslop P (2018) FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173:720–734.e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brady JP, Farber PJ, Sekhar A, Lin Y-H, Huang R, Bah A, Nott TJ, Chan HS, Baldwin AJ, Forman-Kay JD, Kay LE (2017) Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc Natl Acad Sci U S A 114:E8194–E8203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim TH, Tsang B, Vernon RM, Sonenberg N, Kay LE, Forman-Kay JD (2019) Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science 365:825–829

    Article  CAS  PubMed  Google Scholar 

  106. Vernon RM, Chong PA, Tsang B, Kim TH, Bah A, Farber P, Lin H, Forman-Kay JD (2018) Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife:7. https://doi.org/10.7554/eLife.31486

  107. Dzuricky M, Rogers BA, Shahid A, Cremer PS, Chilkoti A (2020) De novo engineering of intracellular condensates using artificial disordered proteins. Nat Chem 12:814–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Boeynaems S, Bogaert E, Kovacs D, Konijnenberg A, Timmerman E, Volkov A, Guharoy M, De Decker M, Jaspers T, Ryan VH, Janke AM, Baatsen P, Vercruysse T, Kolaitis R-M, Daelemans D, Taylor JP, Kedersha N, Anderson P, Impens F, Sobott F, Schymkowitz J, Rousseau F, Fawzi NL, Robberecht W, Van Damme P, Tompa P, Van Den Bosch L (2017) Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol Cell 65:1044–1055.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Murthy AC, Dignon GL, Kan Y, Zerze GH, Parekh SH, Mittal J, Fawzi NL (2019) Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol 26:637–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Monahan Z, Ryan VH, Janke AM, Burke KA, Rhoads SN, Zerze GH, O’Meally R, Dignon GL, Conicella AE, Zheng W, Best RB, Cole RN, Mittal J, Shewmaker F, Fawzi NL (2017) Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J 36:2951–2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li H-R, Chiang W-C, Chou P-C, Wang W-J, Huang J-R (2018) TAR DNA-binding protein 43 (TDP-43) liquid–liquid phase separation is mediated by just a few aromatic residues. J Biol Chem 293:6090–6098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kaur T, Raju M, Alshareedah I, Davis RB, Potoyan DA, Banerjee PR (2021) Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. Nat Commun 12:872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fisher RS, Elbaum-Garfinkle S (2020) Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat Commun 11:4628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schuster BS, Dignon GL, Tang WS, Kelley FM, Ranganath AK, Jahnke CN, Simpkins AG, Regy RM, Hammer DA, Good MC, Mittal J (2020) Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc Natl Acad Sci U S A 117:11421–11431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lin Y-H, Chan HS (2017) Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophys J 112:2043–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cummings CS, Obermeyer AC (2018) Phase separation behavior of supercharged proteins and polyelectrolytes. Biochemistry 57:314–323

    Article  CAS  PubMed  Google Scholar 

  117. Zervoudis NA, Obermeyer AC (2021) The effects of protein charge patterning on complex coacervation. Soft Matter 17:6637–6645

    Article  CAS  PubMed  Google Scholar 

  118. Yang P, Mathieu C, Kolaitis R-M, Zhang P, Messing J, Yurtsever U, Yang Z, Wu J, Li Y, Pan Q, Yu J, Martin EW, Mittag T, Kim HJ, Paul Taylor J (2020) G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181:325–345.e28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH (2017) Phase separation drives heterochromatin domain formation. Nature 547:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sanulli S, Trnka MJ, Dharmarajan V, Tibble RW, Pascal BD, Burlingame AL, Griffin PR, Gross JD, Narlikar GJ (2019) HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, Narlikar GJ (2017) Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lasker K, Boeynaems S, Lam V, Stainton E, Jacquemyn M, Daelemans D, Villa E, Holehouse AS, Gitler AD, Shapiro L (2021) A modular platform for engineering function of natural and synthetic biomolecular condensates bioRxiv:2021.02.03.429226

    Google Scholar 

  123. Mitrea DM, Cika JA, Stanley CB, Nourse A, Onuchic PL, Banerjee PR, Phillips AH, Park C-G, Deniz AA, Kriwacki RW (2018) Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation. Nat Commun 9:1–13

    Article  CAS  Google Scholar 

  124. Mitrea DM, Cika JA, Guy CS, Ban D, Banerjee PR, Stanley CB, Nourse A, Deniz AA, Kriwacki RW (2016) Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. elife 5. https://doi.org/10.7554/eLife.13571

  125. Schmidt HB, Barreau A, Rohatgi R (2019) Phase separation-deficient TDP43 remains functional in splicing. Nat Commun 10:4890

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bowman MA, Riback JA, Rodriguez A, Guo H, Li J, Sosnick TR, Clark PL (2020) Properties of protein unfolded states suggest broad selection for expanded conformational ensembles. Proc Natl Acad Sci U S A 117:23356–23364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Crick SL, Jayaraman M, Frieden C, Wetzel R, Pappu RV (2006) Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc Natl Acad Sci U S A 103:16764–16769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lu X, Murphy RM (2015) Asparagine repeat peptides: aggregation kinetics and comparison with glutamine repeats. Biochemistry 54:4784–4794

    Article  CAS  PubMed  Google Scholar 

  129. Holehouse AS, Garai K, Lyle N, Vitalis A, Pappu RV (2015) Quantitative assessments of the distinct contributions of polypeptide backbone amides versus side chain groups to chain expansion via chemical denaturation. J Am Chem Soc 137:2984–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Crick SL, Ruff KM, Garai K, Frieden C, Pappu RV (2013) Unmasking the roles of N- and C-terminal flanking sequences from exon 1 of huntingtin as modulators of polyglutamine aggregation. Proc Natl Acad Sci U S A 110:20075–20080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kar M, Posey AE, Dar F, Hyman AA, Pappu RV (2021) Glycine-rich peptides from FUS have an intrinsic ability to self-assemble into fibers and networked fibrils. Biochemistry 60:3213–3222

    Article  CAS  PubMed  Google Scholar 

  132. Das RK, Pappu RV (2013) Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci U S A 110:13392–13397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Martin EW, Mittag T (2018) Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry 57:2478–2487

    Article  CAS  PubMed  Google Scholar 

  134. Das RK, Huang Y, Phillips AH, Kriwacki RW, Pappu RV (2016) Cryptic sequence features within the disordered protein p27Kip1 regulate cell cycle signaling. Proc Natl Acad Sci U S A 113:5616–5621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ruff KM, Dar F, Pappu RV (2021) Ligand effects on phase separation of multivalent macromolecules. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2017184118

  136. Miao M, Bellingham CM, Stahl RJ, Sitarz EE, Lane CJ, Keeley FW (2003) Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin. J Biol Chem 278:48553–48562

    Article  CAS  PubMed  Google Scholar 

  137. Reichheld SE, Muiznieks LD, Keeley FW, Sharpe S (2017) Direct observation of structure and dynamics during phase separation of an elastomeric protein. Proc Natl Acad Sci U S A 114:E4408–E4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Quiroz FG, Chilkoti A (2015) Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat Mater 14:1164–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dignon GL, Zheng W, Kim YC, Mittal J (2019) Temperature-controlled liquid–liquid phase separation of disordered proteins. ACS Cent Sci 5:821–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Navarro LA, Ryan JJ, Dzuricky M, Gradzielski M, Chilkoti A, Zauscher S (2021) Microphase separation of resilin-like and elastin-like diblock copolypeptides in concentrated solutions. Biomacromolecules 22:3827–3838

    Article  CAS  PubMed  Google Scholar 

  141. Roberts S, Harmon TS, Schaal JL, Miao V, Li KJ, Hunt A, Wen Y, Oas TG, Collier JH, Pappu RV, Chilkoti A (2018) Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat Mater 17:1154–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Garcia Quiroz F, Li NK, Roberts S, Weber P, Dzuricky M, Weitzhandler I, Yingling YG, Chilkoti A (2019) Intrinsically disordered proteins access a range of hysteretic phase separation behaviors. Sci Adv 5:eaax5177

    Article  PubMed  PubMed Central  Google Scholar 

  143. Simon JR, Carroll NJ, Rubinstein M, Chilkoti A, López GP (2017) Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat Chem 9:509–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ruff KM, Roberts S, Chilkoti A, Pappu RV (2018) Advances in understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. J Mol Biol 430:4619–4635

    Article  CAS  PubMed  Google Scholar 

  145. Zeng X, Holehouse AS, Chilkoti A, Mittag T, Pappu RV (2020) Connecting coil-to-globule transitions to full phase diagrams for intrinsically disordered proteins. Biophys J 119:402–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dorone Y, Boeynaems S, Flores E, ** B, Hateley S, Bossi F, Lazarus E, Pennington JG, Michiels E, De Decker M, Vints K, Baatsen P, Bassel GW, Otegui MS, Holehouse AS, Exposito-Alonso M, Sukenik S, Gitler AD, Rhee SY (2021) A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell 184:4284–4298.e27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Moses D, Yu F, Ginell GM, Shamoon NM, Koenig PS, Holehouse AS, Sukenik S (2020) Revealing the hidden sensitivity of intrinsically disordered proteins to their chemical environment. J Phys Chem Lett 11:10131–10136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Holehouse AS, Sukenik S (2020) Controlling structural bias in intrinsically disordered proteins using solution space scanning. J Chem Theory Comput 16:1794–1805

    Article  CAS  PubMed  Google Scholar 

  149. Wicky BIM, Shammas SL, Clarke J (2017) Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure. Proc Natl Acad Sci U S A 114:9882–9887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Moses D, Guadalupe K, Yu F, Flores E, Perez A, McAnelly R, Shamoon NM, Cuevas-Zepeda E, Merg A, Martin EW, Holehouse AS, Sukenik S (2021) Hidden structure in disordered proteins is adaptive to intracellular changes. bioRxiv:2021.11.24.469609

    Google Scholar 

  151. Yang Y, Willis TL, Button RW, Strang CJ, Fu Y, Wen X, Grayson PRC, Evans T, Sipthorpe RJ, Roberts SL, Hu B, Zhang J, Lu B, Luo S (2019) Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nat Commun 10:3759

    Article  PubMed  PubMed Central  Google Scholar 

  152. Powers SK, Holehouse AS, Korasick DA, Schreiber KH, Clark NM, **g H, Emenecker R, Han S, Tycksen E, Hwang I, Sozzani R, Jez JM, Pappu RV, Strader LC (2019) Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Mol Cell 76:177–190.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Marzahn MR, Marada S, Lee J, Nourse A, Kenrick S, Zhao H, Ben-Nissan G, Kolaitis R-M, Peters JL, Pounds S, Errington WJ, Privé GG, Taylor JP, Sharon M, Schuck P, Ogden SK, Mittag T (2016) Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. EMBO J 35:1254–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bouchard JJ, Otero JH, Scott DC, Szulc E, Martin EW, Sabri N, Granata D, Marzahn MR, Lindorff-Larsen K, Salvatella X, Schulman BA, Mittag T (2018) Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol Cell 72:19–36.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Schmit JD, Feric M, Dundr M (2021) How hierarchical interactions make membraneless organelles tick like clockwork. Trends Biochem Sci 46:525–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bhandari K, Cotten MA, Kim J, Rosen MK, Schmit JD (2021) Structure–function properties in disordered condensates. J Phys Chem B 125:467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schmit JD, Bouchard JJ, Martin EW, Mittag T (2020) Protein network structure enables switching between liquid and gel states. J Am Chem Soc 142:874–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Hyman AA, Alberti S (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077

    Article  CAS  PubMed  Google Scholar 

  159. Wyman J, Gill SJ (1990) Binding and linkage: functional chemistry of biological macromolecules. University Science Books

    Google Scholar 

  160. Ruff KM, Holehouse AS (2017) SAXS versus FRET: a matter of heterogeneity? Biophys J 113:971–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fuertes G, Banterle N, Ruff KM, Chowdhury A, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck PR, Gräter F, Esteban-Martín S, Pappu RV, Svergun DI, Lemke EA (2017) Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114:E6342–E6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Song J, Li J, Chan HS (2021) Small-angle X-ray scattering signatures of conformational heterogeneity and homogeneity of disordered protein ensembles. J Phys Chem B 125:6451–6478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all current and past members of the Pappu, Hyman, Alberti, and Mittag groups for valuable insight in the development and application of the stickers and spacers model over the last 5 years. In particular, we thank Jeong-Mo Choi, Jie Wang, Tyler Harmon, Kiersten Ruff, Ammon Posey, Furqan Dar, Mina Farag, Erik Martin, Ivan Peran, Anne Bremer, and Rohit Pappu, Tanja Mittag, Anthony Hyman, and Simon Alberti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex S. Holehouse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ginell, G.M., Holehouse, A.S. (2023). An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. In: Zhou, HX., Spille, JH., Banerjee, P.R. (eds) Phase-Separated Biomolecular Condensates. Methods in Molecular Biology, vol 2563. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2663-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2663-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2662-7

  • Online ISBN: 978-1-0716-2663-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation