Structure-Based Optimization of Antibody-Based Biotherapeutics for Improved Developability: A Practical Guide for Molecular Modelers

  • Protocol
  • First Online:
Computer-Aided Antibody Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2552))

  • 2331 Accesses

Abstract

A great effort to avoid known developability risks is now more often being made earlier during the lead candidate discovery and optimization phase of biotherapeutic drug development. Predictive computational strategies, used in the early stages of antibody discovery and development, to mitigate the risk of late-stage failure of antibody candidates, are highly valuable. Various structure-based methods exist for accurately predicting properties critical to developability, and, in this chapter, we discuss the history of their development and demonstrate how they can be used to filter large sets of candidates arising from target affinity screening and to optimize lead candidates for developability. Methods for modeling antibody structures from sequence and detecting post-translational modifications and chemical degradation liabilities are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jarasch A, Koll H et al (2015) Developability assessment during the selection of novel therapeutic antibodies. J Pharm Sci 104(6):1885–1898

    Article  CAS  PubMed  Google Scholar 

  2. Jain T, Sun T et al (2017) Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci U S A 114(5):944–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar S, Singh SK (2015) Developability of biotherapeutics: computational approaches. Taylor & Francis

    Book  Google Scholar 

  4. Wolf Pérez A-M, Sormanni P et al (2019) In vitro and in silico assessment of the developability of a designed monoclonal antibody library. MAbs 11(2):388–400

    Article  PubMed  PubMed Central  Google Scholar 

  5. Salgado JC, Rapaport I et al (2006) Predicting the behavior of proteins in hydrophobic interaction chromatography 1: using the hydrophobic inbalance (HI) to describe their surface amino acid distribution. J Chromatography A 1107:110–119

    Article  CAS  Google Scholar 

  6. Chennamsetty N, Voynov V et al (2009) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A 106:11937–11942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perchiacca JM, Ladiwala AR et al (2012) Aggregation-resistant domain antibodies engineered with charged mutations near the edges of the complementarity-determining regions. Protein Eng Des Sel 25:591–601

    Article  CAS  PubMed  Google Scholar 

  8. Courtois F, Schneider CP et al (2015) Rational design of biobetters with enhanced stability. J Pharm Sci 104(8):2433–2440

    Article  CAS  PubMed  Google Scholar 

  9. Wu SJ, Luo J et al (2010) Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng Des Sel 23:643–518

    Article  CAS  PubMed  Google Scholar 

  10. Sormanni P, Aprile FA et al (2015) The CamSol method of rational design of protein mutants with enhanced solubility. J Mol Biol 427(2):478–490

    Article  CAS  PubMed  Google Scholar 

  11. Jetha A, Thorsteinson N et al (2018) Homology modeling and structure-based design improve hydrophobic interaction chromatography behavior of integrin binding antibodies. MAbs 10(2):890–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sankar S, Krystek SR Jr et al (2018) Prediction of aggregation-prone regions in proteins based on the distribution of surface patches. Proteins 86(11):1147–1156

    Article  CAS  PubMed  Google Scholar 

  13. Tomar DS, Singh SK, Li L, Broulidakis MP, Kumar S (2018) In silico prediction of diffusion interaction parameter (kD), a key indicator of antibody solution behaviors. Pharm Res 35:193

    Article  PubMed  Google Scholar 

  14. Lauer TM, Agrawal NJ et al (2012) Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 101:102–115

    Article  CAS  PubMed  Google Scholar 

  15. Apgar JR, Tam AS et al (2020) Modeling and mitigation of high-concentration antibody viscosity through structure-based computer-aided protein design. PLoS One 15(5):e0232713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yadav S, Shire JS et al (2010) Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies. J Pharm Sci 99(3):1152–1168

    Article  CAS  PubMed  Google Scholar 

  17. Sharma VK, Patapoff TW et al (2014) In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. PNAS 111(52):18601–18606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nichols P, Li L et al (2015) Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. MAbs 7(1):212–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Agrawal NJ, Helk B et al (2016) Computational tool for the early screening of monoclonal antibodies for their viscosities. MAbs 8(1):43–48

    Article  CAS  PubMed  Google Scholar 

  20. Tomar DS, Li L et al (2017) In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions. MAbs 9(3):476–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kraft TE, Richter WF et al (2020) Heparin chromatography as an in vitro predictor for antibody clearance rate through pinocytosis. MAbs 12(1):1683432

    Article  PubMed  Google Scholar 

  22. Mellquist JL, Kasturi L et al (1998) The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry 37(19):6833–6837

    Article  CAS  PubMed  Google Scholar 

  23. Robinson NE, Robinson AB (2001) Prediction of protein deamidation rates from primary and three-dimensional structure. PNAS 98(8):4367–4372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sydow JF, Lipsmeier F et al (2014) Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS One 9(6):e100736

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yan Q, Huang M et al (2018) Structure based prediction of asparagine deamidation propensity in monoclonal antibodies. MAbs 10(6):901–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu X, Nobrega RP et al (2018) Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. MAbs 11(1):45–57

    Article  PubMed  PubMed Central  Google Scholar 

  27. Plotnikov NV, Singh SK et al (2017) Quantifying the risks of asparagine deamidation and aspartate isomerization in biopharmaceuticals by computing reaction free-energy states. J Phys Chem B 121(4):719–730

    Article  CAS  PubMed  Google Scholar 

  28. Yang R, Jain T et al (2017) Rapid assessment of oxidation via middle-down LCMS correlates with methionine side-chain solvent-accessible surface area for 121 clinical stage monoclonal antibodies. MAbs 9(4):646–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chennamsetty N, Quan Y et al (2015) Modeling the oxidation of methionine residues by peroxides in proteins. J Pharm Sci 104(4):1246–1255

    Article  CAS  PubMed  Google Scholar 

  30. Pavon JA, **ao L et al (2019) Selective tryptophan oxidation of monoclonal antibodies: oxidative stress and modeling predictions. Anal Chem 91(3):2192–2200

    Article  CAS  PubMed  Google Scholar 

  31. Kumar S, Plotnikov NV et al (2017) Biopharmaceutical informatics: supporting biologic drug development via molecular modelling and informatics. J Pharm 70(5):595–608

    Article  Google Scholar 

  32. Schuster J, Koulov A et al (2020) In vivo stability of therapeutic proteins. Pharm Res 37:23

    Article  CAS  PubMed  Google Scholar 

  33. Lepore R, Olimpieri PP et al (2017) PIGSPro: prediction of immunoGlobulin structures v2. Nucleic Acids Res 45(W1):W17–W23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leem J, Dunbar J et al (2016) ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. MAbs 8(7):1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weitzner BD, Jeliazkov JR et al (2017) Modeling and docking of antibody structures with Rosetta. Nat Protoc 12(2):401–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chemical Computing Group ULC, Montreal, QC, Canada (2019) Molecular Operating Environment (MOE)

    Google Scholar 

  37. Schrödinger, LLC, New York, NY, USA (2020) Schrödinger Release 2020-1: BioLuminate

    Google Scholar 

  38. Dassault Systèmes, San Diego, CA, USA (2016) BIOVIA, Discovery Studio Modeling Environment, Release 2017

    Google Scholar 

  39. Norman RA, Ambrosetti F et al (2019) Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief Bioinform 21(5):1549–1567

    Article  PubMed Central  Google Scholar 

  40. Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196(4):901–917

    Article  CAS  PubMed  Google Scholar 

  41. Martin AC, Thornton JM (1996) Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. J Mol Biol 263(5):800–815

    Article  CAS  PubMed  Google Scholar 

  42. North B, Lehmann A et al (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406(2):228–256

    Article  CAS  PubMed  Google Scholar 

  43. Nowak J, Baker T et al (2016) Length-independent structural similarities enrich the antibody CDR canonical class model. MAbs 8(4):751–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marks C, Deane CM (2017) Antibody H3 structure prediction. Comput Struct Biotechnol J 15:222–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Almagro JC, Beavers MP et al (2011) Antibody modeling assessment. Proteins 79(11):3050–3066

    Article  CAS  PubMed  Google Scholar 

  46. Teplyakov A, Luo J et al (2014) Antibody modeling assessment II. Structures and models. Proteins 82(8):1563–1582

    Article  CAS  PubMed  Google Scholar 

  47. Berman J, Westbrook J et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Neergaard MS, Kalonia DA et al (2013) Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass – prediction of viscosity through protein-protein interaction measurements. Eur J Pharm Sci 49(3):400–410

    Article  CAS  PubMed  Google Scholar 

  49. Bailly M, Mieczkowski C et al (2020) Predicting antibody developability profiles through early stage discovery screening. MAbs 12(1):1743053

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thorsteinson, N., Comeau, S.R., Kumar, S. (2023). Structure-Based Optimization of Antibody-Based Biotherapeutics for Improved Developability: A Practical Guide for Molecular Modelers. In: Tsumoto, K., Kuroda, D. (eds) Computer-Aided Antibody Design. Methods in Molecular Biology, vol 2552. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2609-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2609-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2608-5

  • Online ISBN: 978-1-0716-2609-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation