Profiling m6A RNA Modifications in Low Amounts of Plant Cells Using Maize Meiocytes

  • Protocol
  • First Online:
Plant Gametogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2484))

  • 3268 Accesses

Abstract

RNA modifications can influence gene expression via multiple aspects such as RNA stability and alternative splicing. The most prominent RNA modification is m6A (N6-methyladenosine). Its profiling from low starting amounts of <100 cells is challenging. We describe here a complete workflow from cell isolation to data analysis that is based on using an RNA CUT&RUN-supported m6A-RIP (RNA immunoprecipitation) procedure and a subsequent adaptor-tagging library synthesis. Male meiocytes isolated from maize anthers were used as a test system to establish the protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee M, Kim B, Kim VN (2014) Emerging roles of RNA modification: m6A and U-tail. Cell 158:980–987

    Article  CAS  Google Scholar 

  2. Skene P, Henikoff S, Reinberg D (2017) An efficient targeted nuclease strategy for high-resolution map** of DNA binding sites. eLife 6:e21856

    Article  Google Scholar 

  3. Weichmann F, Hett R, Schepers A et al (2020) Validation strategies for antibodies targeting modified ribonucleotides. RNA 26(10):1489–1506

    Article  CAS  Google Scholar 

  4. Dukowic-Schulze S, Garcia N, Shunmugam ASK et al (2020) Isolating male meiocytes from maize and wheat for “-omics” analyses. In: Methods in Molecular Biology. Springer, New York, pp 237–258

    Google Scholar 

  5. Afgan E, Baker D, Batut B et al (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544

    Article  CAS  Google Scholar 

  6. Andrews S (2010) FastQC - A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  7. Krueger F, James F, Ewels P, et al (2021). FelixKrueger/TrimGalore: v0.6.7 - DOI via Zenodo (0.6.7). Zenodo. https://doi.org/10.5281/zenodo.5127899

  8. Ewels P, Magnusson M, Lundin S et al (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048

    Article  CAS  Google Scholar 

  9. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  10. Hufford MB, Seetharam AS, Woodhouse MR, et al (2021) De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. bioRxiv 2021.01.14.426684

    Google Scholar 

  11. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  12. Ramírez F, Ryan DP, Grüning B et al (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160–W165

    Article  Google Scholar 

  13. Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative Genomics Viewer. Nat Biotechnol 29:24–26

    Article  CAS  Google Scholar 

  14. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  Google Scholar 

  15. Chen T, Hao Y-J, Zhang Y et al (2015) m6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 16:289–301

    Article  CAS  Google Scholar 

  16. Linder B, Grozhik AV, Olarerin-George AO et al (2015) Single-nucleotide resolution map** of m6A and m6Am throughout the transcriptome. Nat Methods 12:767–772

    Article  CAS  Google Scholar 

  17. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  Google Scholar 

  18. Bailey TL (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27:1653–1659

    Article  CAS  Google Scholar 

  19. Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30:301–304

    Article  CAS  Google Scholar 

  20. Baccarella A, Williams CR, Parrish JZ et al (2018) Empirical assessment of the impact of sample number and read depth on RNA-Seq analysis workflow performance. BMC Bioinformatics 19:423

    Article  CAS  Google Scholar 

  21. Miura F, Enomoto Y, Dairiki R et al (2012) Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 40:e136

    Article  CAS  Google Scholar 

  22. Foley JW, Zhu C, Jolivet P et al (2019) Gene expression profiling of single cells from archival tissue with laser-capture microdissection and Smart-3SEQ. Genome Res 29:1816–1825

    Article  CAS  Google Scholar 

  23. Begcy K, Dresselhaus T (2017) Tracking maize pollen development by the Leaf Collar Method. Plant Reprod 30:171–178

    Article  CAS  Google Scholar 

  24. Liu H, Bekig O, Lucas MC et al (2019) Accurate detection of m6A RNA modifications in native RNA sequences. Nat Commun 10:4079

    Article  Google Scholar 

  25. Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the Meister lab for access to their MiSeq machine and excellent support by N. Eichner. This work was supported by the German Research Foundation DFG via Collaborative Research Center SFB960 to T.D. and a FAS grant (Financial Support for Equality) of the University of Regensburg to S.D..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Dukowic-Schulze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shabani, D., Dresselhaus, T., Dukowic-Schulze, S. (2022). Profiling m6A RNA Modifications in Low Amounts of Plant Cells Using Maize Meiocytes. In: Lambing, C. (eds) Plant Gametogenesis. Methods in Molecular Biology, vol 2484. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2253-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2253-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2252-0

  • Online ISBN: 978-1-0716-2253-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation