Dup-In and DIRex: Techniques for Single-Step, Scar-Free Mutagenesis with Marker Recycling

  • Protocol
  • First Online:
Recombineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2479))

  • 1417 Accesses

Abstract

This chapter describes two related recombineering-based techniques: “Duplication Insertion” (Dup-In) and “Direct- and Inverted Repeat stimulated excision” (DIRex). Dup-In is used for transferring existing mutations between strains, and DIRex for generating almost any type of mutation. Both techniques use intermediate insertions with counter-selectable cassettes, flanked by directly repeated sequences that enable exact and spontaneous excision of the cassettes. These constructs can be transferred to other strains using generalized transductions, and the final intended mutation is obtained following selection for spontaneous loss of the counter-selectable cassette, which leaves only the intended mutation behind in the final strain. The techniques have been used in several strains of Escherichia coli and Salmonella enterica, and should be readily adaptable to other organisms where λ Red recombineering or similar methods are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li X, Thomason LC, Sawitzke JA et al (2013) Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. Nucleic Acids Res 41:e204

    Article  CAS  Google Scholar 

  2. Warming S, Costantino N, Court DL et al (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36

    Article  Google Scholar 

  3. Wang H, Bian X, **a L et al (2014) Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res 42:e37

    Article  CAS  Google Scholar 

  4. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  Google Scholar 

  5. Reisch CR, Prather KLJ (2015) The no-SCAR (Scarless Cas9 assisted recombineering) system for genome editing in Escherichia coli. Sci Rep 5:15096

    Article  CAS  Google Scholar 

  6. Näsvall J, Knöppel A, Andersson DI (2017) Duplication-Insertion Recombineering: a fast and scar-free method for efficient transfer of multiple mutations in bacteria. Nucleic Acids Res 45:e33

    Article  Google Scholar 

  7. Anderson P, Roth J (1981) Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. Proc Natl Acad Sci U S A 78:3113–3117

    Article  CAS  Google Scholar 

  8. Knöppel A, Näsvall J, Andersson DI (2016) Compensating the fitness costs of synonymous mutations. Mol Biol Evol 33:1461–1477

    Article  Google Scholar 

  9. Näsvall J (2017) Direct and Inverted Repeat stimulated excision (DIRex): simple, single-step, and scar-free mutagenesis of bacterial genes. PLoS One 12:e0184126

    Article  Google Scholar 

  10. Knöppel A, Knopp M, Albrecht LM et al (2018) Genetic adaptation to growth under laboratory conditions in Escherichia coli and Salmonella enterica. Front Microbiol 9

    Google Scholar 

  11. Lovett ST, Hurley RL, Sutera VA et al (2002) Crossing over between regions of limited homology in Escherichia coli: RecA-dependent and RecA-independent pathways. Genetics 160:851–859

    Article  CAS  Google Scholar 

  12. Bzymek M, Lovett ST (2001) Evidence for two mechanisms of palindrome-stimulated deletion in Escherichia coli: single-strand annealing and replication slipped mispairing. Genetics 158:527–540

    Article  CAS  Google Scholar 

  13. Luria SE, Burrous JW (1957) Hybridization between Escherichia coli and shigella1. J Bacteriol 74:461–476

    Article  CAS  Google Scholar 

  14. Blomfield IC, Vaughn V, Rest RF et al (1991) Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol 5:1447–1457

    Article  CAS  Google Scholar 

  15. Morse RP, Nikolakakis KC, Willett JLE et al (2012) Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems. Proc Natl Acad Sci U S A 109:21480–21485

    Article  CAS  Google Scholar 

  16. Koskiniemi S, Pränting M, Gullberg E et al (2011) Activation of cryptic aminoglycoside resistance in Salmonella enterica. Mol Microbiol 80:1464–1478

    Article  CAS  Google Scholar 

  17. Datta S, Costantino N, Court DL (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379:109–115

    Article  CAS  Google Scholar 

  18. Ikeda H, Tomizawa J (1965) Transducing fragments in generalized transduction by phage P1. J Mol Biol 14:85–109

    Article  CAS  Google Scholar 

  19. Schmieger H (1972) Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet MGG 119:75–88

    Article  CAS  Google Scholar 

  20. Thierauf A, Perez G, Maloy S (2009) Generalized transduction. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: methods and protocols, volume 1: isolation, characterization, and interactions. Humana Press, Totowa, NJ, pp 267–286

    Google Scholar 

  21. Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in luria-bertani broth. J Bacteriol 189:8746–8749

    Article  CAS  Google Scholar 

  22. Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206

    Article  CAS  Google Scholar 

  23. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joakim Näsvall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Näsvall, J. (2022). Dup-In and DIRex: Techniques for Single-Step, Scar-Free Mutagenesis with Marker Recycling. In: Reisch, C.R. (eds) Recombineering. Methods in Molecular Biology, vol 2479. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2233-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2233-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2232-2

  • Online ISBN: 978-1-0716-2233-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation