A Protocol for Studying Transcription Factor Dynamics Using Fast Single-Particle Tracking and Spot-On Model-Based Analysis

  • Protocol
  • First Online:
Chromatin

Abstract

Single-particle tracking (SPT) makes it possible to directly observe single protein diffusion dynamics in living cells over time. Thus, SPT has emerged as a powerful method to quantify the dynamics of nuclear proteins such as transcription factors (TFs). Here, we provide a protocol for conducting and analyzing SPT experiments with a focus on fast tracking (“fastSPT”) of TFs in mammalian cells. First, we explore how to engineer and prepare cells for SPT experiments. Next, we examine how to optimize SPT experiments by imaging at low densities to minimize tracking errors and by using stroboscopic excitation to minimize motion-blur. Next, we discuss how to convert raw SPT data into single-particle trajectories. Finally, we illustrate how to analyze these trajectories using the kinetic modeling package Spot-On. We discuss how to use Spot-On to fit histograms of displacements and extract useful information such as the fraction of TFs that are bound and freely diffusing, and their associated diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lionnet T, Wu C (2021) Single-molecule tracking of transcription protein dynamics in living cells: seeing is believing, but what are we seeing? Curr Opin Genet Dev 67:94–102

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cramer P (2019) Organization and regulation of gene transcription. Nature 573:45–54

    CAS  PubMed  Google Scholar 

  3. Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    CAS  PubMed  Google Scholar 

  4. McNally JG, Müller WG, Walker D, Wolford R, Hager GL (2000) The Glucocorticoid Receptor: Rapid Exchange with Regulatory Sites in Living Cells. Science 287:1262–1265. https://doi.org/10.1126/science.287.5456.1262

  5. Mueller F, Stasevich TJ, Mazza D, McNally JG (2013) Quantifying transcription factor kinetics: at work or at play? Crit Rev Biochem Mol Biol 48:492–514

    CAS  PubMed  Google Scholar 

  6. Mueller F, Mazza D, Stasevich TJ, McNally JG (2010) FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr Opin Cell Biol 22:403–411

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Politi AZ, Cai Y, Walther N, Hossain MJ, Koch B, Wachsmuth M, Ellenberg J (2018) Quantitative map** of fluorescently tagged cellular proteins using FCS-calibrated four-dimensional imaging. Nat Protoc 13:1445–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mazza D, Abernathy A, Golob N, Morisaki T, McNally JG (2012) A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res 40:e119–e119

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N, Shuang B, Landes CF (2017) Single particle tracking: from theory to biophysical applications. Chem Rev 117:7331–7376

    CAS  PubMed  Google Scholar 

  10. Goulian M, Simon SM (2000) Tracking single proteins within cells. Biophys J 79:2188–2198

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen J, Zhang Z, Li L, Chen B-C, Revyakin A, Hajj B, Legant W, Dahan M, Lionnet T, Betzig E, Tjian R, Liu Z (2014) Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156:1274–1285

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Garcia DA, Fettweis G, Presman DM, Paakinaho V, Jarzynski C, Upadhyaya A, Hager GL (2021) Power-law behavior of transcription factor dynamics at the single-molecule level implies a continuum affinity model. Nucleic Acids Res 49:6605. https://doi.org/10.1093/nar/gkab072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reisser M, Hettich J, Kuhn T, Popp AP, Große-Berkenbusch A, Gebhardt JCM (2020) Inferring quantity and qualities of superimposed reaction rates from single molecule survival time distributions. Sci Rep 10:1758

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X (2017) CTCF and cohesin regulate chromatin loop stability with distinct dynamics. elife 6:e25776

    PubMed  PubMed Central  Google Scholar 

  15. Metzler R, Jeon J-H, Cherstvy AG, Barkai E (2014) Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys 16:24128–24164

    CAS  PubMed  Google Scholar 

  16. Hansen AS, Amitai A, Cattoglio C, Tjian R, Darzacq X (2019) Guided nuclear exploration increases CTCF target search efficiency. Nat Chem Biol 16:257. https://doi.org/10.1038/s41589-019-0422-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loffreda A, Jacchetti E, Antunes S, Rainone P, Daniele T, Morisaki T, Bianchi ME, Tacchetti C, Mazza D (2017) Live-cell p53 single-molecule binding is modulated by C-terminal acetylation and correlates with transcriptional activity. Nat Commun 8:313

    PubMed  PubMed Central  Google Scholar 

  18. Popp AP, Hettich J, Gebhardt JCM (2021) Altering transcription factor binding reveals comprehensive transcriptional kinetics of a basic gene. Nucleic Acids Research, 49(11), pp.6249–6266

    Google Scholar 

  19. Nguyen VQ, Ranjan A, Liu S, Tang X, Ling YH, Wisniewski J, Mizuguchi G, Li KY, Jou V, Zheng Q, Lavis LD, Lionnet T, Wu C (2020) Spatio-Temporal Coordination of Transcription Preinitation Complex Assembly in live Cells. bioRxiv. https://doi.org/10.1101/2020.12.30.424853

  20. Jain S, Shukla S, Yang C, Zhang M, Fatma Z, Lingamaneni M, Abesteh S, Lane ST, **ong X, Wang Y, Schroeder CM, Selvin PR, Zhao H (2021) TALEN outperforms Cas9 in editing heterochromatin target sites. Nat Commun 12:606

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huseyin MK, Klose RJ (2021) Live-cell single particle tracking of PRC1 reveals a highly dynamic system with low target site occupancy. Nat Commun 12:887

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tatavosian R, Duc HN, Huynh TN, Fang D, Schmitt B, Shi X, Deng Y, Phiel C, Yao T, Zhang Z, Wang H, Ren X (2018) Live-cell single-molecule dynamics of PcG proteins imposed by the DIPG H3.3K27M mutation. Nat Commun 9:2080

    PubMed  PubMed Central  Google Scholar 

  23. Teves SS, An L, Hansen AS, **e L, Darzacq X, Tjian R (2016) A dynamic mode of mitotic bookmarking by transcription factors. elife 5:e22280

    PubMed  PubMed Central  Google Scholar 

  24. Deluz C, Friman ET, Strebinger D, Benke A, Raccaud M, Callegari A, Leleu M, Manley S, Suter DM (2016) A role for mitotic bookmarking of SOX2 in pluripotency and differentiation. Genes Dev 30:2538. http://genesdev.cshlp.org/content/early/2016/12/05/gad.289256.116.abstract

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM, Cattoglio C, Heckert A, Banala S, Lavis L, Darzacq X, Tjian R (2018) Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361:eaar2555

    PubMed  PubMed Central  Google Scholar 

  26. M. Mir, A. Reimer, M. Stadler, A. Tangara, A. S. Hansen, D. Hockemeyer, M. B. Eisen, H. Garcia, X. Darzacq, Y. L. Lyubchenko, Springer New York, NY, 2018; Single Molecule Imaging in Live Embryos Using Lattice Light-Sheet Microscopy. https://doi.org/10.1007/978-1-4939-8591-3_32, pp. 541–559

  27. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density map** of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157

    CAS  PubMed  Google Scholar 

  28. Hansen AS, Woringer M, Grimm JB, Lavis LD, Tjian R, Darzacq X (2018) Robust model-based analysis of single-particle tracking experiments with Spot-On. elife 7:e33125

    PubMed  PubMed Central  Google Scholar 

  29. Watanabe N, Mitchison TJ (2002) Single-Molecule Speckle Analysis of Actin Filament Turnover in Lamellipodia. Science 295:1083–1086. https://doi.org/10.1126/science.1067470

  30. Gebhardt JCM, Suter DM, Roy R, Zhao ZW, Chapman AR, Basu S, Maniatis T, **e XS (2013) Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods 10:421

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Presman DM, Ball DA, Paakinaho V, Grimm JB, Lavis LD, Karpova TS, Hager GL (2017) Quantifying transcription factor binding dynamics at the single-molecule level in live cells. Methods 123:76–88

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shao S, Xue B, Sun Y (2018) Intranucleus single-molecule imaging in living cells. Biophys J 115:181–189

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    CAS  PubMed  Google Scholar 

  34. Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, Revyakin A, Patel R, Macklin JJ, Normanno D, Singer RH, Lionnet T, Lavis LD (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12:244

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Grimm JB, English BP, Choi H, Muthusamy AK, Mehl BP, Dong P, Brown TA, Lippincott-Schwartz J, Liu Z, Lionnet T, Lavis LD (2016) Bright photoactivatable fluorophores for single-molecule imaging. Nat Methods 13:985

    CAS  PubMed  Google Scholar 

  36. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161

    CAS  PubMed  Google Scholar 

  37. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Elf J, Li G-W, **e XS (2007) Probing Transcription Factor Dynamics at the Single-Molecule Level in a LivingCell. Science 316:1191–1194. https://doi.org/10.1126/science.1141967

  39. Izeddin I, Récamier V, Bosanac L, Cissé II, Boudarene L, Dugast-Darzacq C, Proux F, Bénichou O, Voituriez R, Bensaude O, Dahan M, Darzacq X (2014) Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. elife 3:e02230

    PubMed Central  Google Scholar 

  40. Chenouard N, Smal I, de Chaumont F, Maška M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, Coraluppi S, Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen H, Xu Y, Magnusson KEG, Jaldén J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte F, Tinevez J-Y, Shorte SL, Willemse J, Celler K, van Wezel GP, Dan H-W, Tsai Y-S, de Solórzano CO, Olivo-Marin J-C, Meijering E (2014) Objective comparison of particle tracking methods. Nat Methods 11:281–289

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Deschout H, Neyts K, Braeckmans K (2012) The influence of movement on the localization precision of sub-resolution particles in fluorescence microscopy. J Biophotonics 5:97–109

    CAS  PubMed  Google Scholar 

  42. Lee A, Tsekouras K, Calderon C, Bustamante C, Pressé S (2017) Unraveling the thousand word picture: an introduction to super-resolution data analysis. Chem Rev 117:7276–7330

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90

    CAS  PubMed  Google Scholar 

  44. Sergé A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5:687–694

    PubMed  Google Scholar 

  45. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shivanandan A, Radenovic A, Sbalzarini IF (2013) MosaicIA: an ImageJ/Fiji plugin for spatial pattern and interaction analysis. BMC Bioinformatics 14:349

    PubMed  PubMed Central  Google Scholar 

  47. Persson F, Lindén M, Unoson C, Elf J (2013) Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat Methods 10:265

    PubMed  Google Scholar 

  48. Monnier N, Barry Z, Park HY, Su K-C, Katz Z, English BP, Dey A, Pan K, Cheeseman IM, Singer RH, Bathe M (2015) Inferring transient particle transport dynamics in live cells. Nat Methods 12:838–840

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Vink JNA, Brouns SJJ, Hohlbein J (2020) Extracting transition rates in particle tracking using analytical diffusion distribution analysis. Biophys J 119:1970–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Karslake JD, Donarski ED, Shelby SA, Demey LM, DiRita VJ, Veatch SL, Biteen JS (2020) SMAUG: analyzing single-molecule tracks with nonparametric Bayesian statistics. Methods 193:16. https://doi.org/10.1016/j.ymeth.2020.03.008

    Article  CAS  PubMed  Google Scholar 

  51. Kues T, Kubitscheck U (2002) Single molecule motion perpendicular to the focal plane of a microscope: application to splicing factor dynamics within the cell nucleus. Single Mol 3:218–224

    CAS  Google Scholar 

  52. Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q (2018) Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558:318–323

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mangel WF, McGrath WJ, **ong K, Graziano V, Blainey PC (2016) Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA. Nat Commun 7:10202

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cattoglio C, Pustova I, Walther N, Ho JJ, Hantsche-Grininger M, Inouye CJ, Hossain MJ, Dailey GM, Ellenberg J, Darzacq X, Tjian R, Hansen AS (2019) Determining cellular CTCF and cohesin abundances to constrain 3D genome models. elife 8:e40164

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Domenic Narducci, Miles Huseyin, ** Yang, Hugo Brandão, Viraat Goel, Sarah Nemsick, Shdema Filler-Hayut, Michele Gabriele, Jyothi Mahadevan, Meagan Esbin, Maxime Woringer, and Thomas Graham for insightful comments on the manuscript. We would like to acknowledge Davide Mazza, whose 2012 paper introduced the kinetic modeling framework that was ultimately implemented in Spot-On in a modified form, Maxime Woringer who codeveloped Spot-On and led the development of the web-interface and the Python version and who has been maintaining the web-interface, the Tjian-Darzacq lab for discussions during the development of Spot-On and for hosting the web-interface, and Luke Lavis for the development and sharing of Janelia Fluor dyes. We thank Domenic Narducci for the code to simulate the concept of motion-blurring in Fig. 5. This work was supported by the National Institutes of Health under grant numbers R00GM130896, DP2GM140938, and UM1HG011536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders S. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jha, A., Hansen, A.S. (2022). A Protocol for Studying Transcription Factor Dynamics Using Fast Single-Particle Tracking and Spot-On Model-Based Analysis. In: Horsfield, J., Marsman, J. (eds) Chromatin. Methods in Molecular Biology, vol 2458. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2140-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2140-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2139-4

  • Online ISBN: 978-1-0716-2140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation