Ultrasonic Decontamination and Process Intensification

  • Chapter
  • First Online:
Emerging Food Processing Technologies

Abstract

Ultrasound is a versatile technology and has been successfully applied in several food processes including extraction, drying, decontamination, brining, mixing and homogenization, emulsification, freezing, thawing, and cutting of foods. High-power ultrasound can induce physical and chemical changes in the biological matrices due to mechanical, cavitational, and thermal effects. This chapter outlines the method and protocols employed in application of ultrasound for food applications. In particular, operation of contact and non-contact-type ultrasound systems with a main focus on microbial decontamination and process intensification (mainly brining of meat) is described in details. Various protocols for measuring ultrasonic process-product interactions including estimation of hydrogen peroxide and oxidation products are also discussed. Furthermore, methods evaluating antimicrobial effectiveness are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kentish S, Feng H (2014) Applications of power ultrasound in food processing. Annu Rev Food Sci Technol 5(1):263–284

    Article  CAS  PubMed  Google Scholar 

  2. Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21(7):323–331

    Article  CAS  Google Scholar 

  3. Shirsath S, Sonawane S, Gogate P (2012) Intensification of extraction of natural products using ultrasonic irradiations—a review of current status. Chem Eng Process 53:10–13

    Article  CAS  Google Scholar 

  4. Kadam SU, Tiwari BK, O’Donnell CP (2013) Application of novel extraction technologies for bioactives from marine algae. J Agric Food Chem 61(20):4667–4675

    Article  CAS  PubMed  Google Scholar 

  5. Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27(5):298–306

    Article  CAS  PubMed  Google Scholar 

  6. Piyasena P, Mohareb E, McKellar R (2003) Inactivation of microbes using ultrasound: a review. Int J Food Microbiol 87(3):207–216

    Article  CAS  PubMed  Google Scholar 

  7. Tiwari B, Mason T (2012) Ultrasound processing of fluid foods. In: Novel thermal and non-thermal technologies for fluid foods. Elsevier, Amsterdam, pp 135–165

    Chapter  Google Scholar 

  8. Rodríguez G et al (2010) Experimental study of defoaming by air-borne power ultrasonic technology. Phys Procedia 3(1):135–139

    Article  Google Scholar 

  9. Zhu X et al (2021) Applications of ultrasound to enhance fluidized bed drying of Ascophyllum nodosum: drying kinetics and product quality assessment. Ultrason Sonochem 70:105298

    Article  CAS  PubMed  Google Scholar 

  10. Pisano MA, Boucher RM, Alcamo IE (1966) Sterilizing effects of high-intensity airborne sonic and ultrasonic waves. Appl Microbiol 14(5):732–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Charoux CM et al (2017) Applications of airborne ultrasonic technology in the food industry. J Food Eng 208:28–36

    Article  Google Scholar 

  12. Gallego-Juárez JA, Riera E (2011) Technologies and applications of airborne power ultrasound in food processing. In: Ultrasound technologies for food and bioprocessing. Springer, Berlin, pp 617–641

    Chapter  Google Scholar 

  13. Cárcel J et al (2012) Food process innovation through new technologies: use of ultrasound. J Food Eng 110(2):200–207

    Article  Google Scholar 

  14. Ozuna C et al (2014) Influence of material structure on air-borne ultrasonic application in drying. Ultrason Sonochem 21(3):1235–1243

    Article  CAS  PubMed  Google Scholar 

  15. Wu TY et al (2013) Theory and fundamentals of ultrasound. In: Wu TY et al (eds) Advances in ultrasound technology for environmental remediation. Springer, Dordrecht, pp 5–12

    Chapter  Google Scholar 

  16. Riesz P, Berdahl D, Christman CL (1985) Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect 64:233–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santos HM, Lodeiro C, Capelo-Martínez J-L (2008) The power of ultrasound. Ultrasound Chem:1–16

    Google Scholar 

  18. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    Article  CAS  PubMed  Google Scholar 

  19. Ogawa R et al (2016) Bioeffects of ultrasound and its therapeutic application. In: Handbook of ultrasonics and sonochemistry. Springer Singapore, Singapore, pp 1049–1074

    Chapter  Google Scholar 

  20. Tang J, Guha C, Tome WA (2015) Biological effects induced by non-thermal ultrasound and implications for cancer therapy: a review of the current literature. Technol Cancer Res Treat 14(2):221–235

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Dai M, Yuan Z (2018) Methods for the detection of reactive oxygen species. Anal Methods 10(38):4625–4638

    Article  CAS  Google Scholar 

  22. Choe E, Min DB (2006) Chemistry and reactions of reactive oxygen species in foods. Crit Rev Food Sci Nutr 46(1):1–22

    Article  CAS  PubMed  Google Scholar 

  23. Deng Y et al (2018) Influence of ultrasound assisted thermal processing on the physicochemical and sensorial properties of beer. Ultrason Sonochem 40(Pt A):166–173

    Article  CAS  PubMed  Google Scholar 

  24. Zhang QA et al (2015) Free radical generation induced by ultrasound in red wine and model wine: an EPR spin-trap** study. Ultrason Sonochem 27:96–101

    Article  PubMed  Google Scholar 

  25. **ret D et al (2012) Degradation of edible oil during food processing by ultrasound: electron paramagnetic resonance, physicochemical, and sensory appreciation. J Agric Food Chem 60(31):7761–7768

    Article  CAS  PubMed  Google Scholar 

  26. Ziembowicz S, Kida M, Koszelnik P (2017) Sonochemical formation of hydrogen peroxide. In: Proceedings, vol 2(5), p 188

    Google Scholar 

  27. Eisenberg G (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal Ed 15(5):327–328

    Article  CAS  Google Scholar 

  28. Bou R et al (2008) Determination of hydroperoxides in foods and biological samples by the ferrous oxidation-xylenol orange method: a review of the factors that influence the method’s performance. Anal Biochem 377(1):1–15

    Article  CAS  PubMed  Google Scholar 

  29. Satterfield CN, Bonnell AH (1955) Interferences in titanium sulfate method for hydrogen peroxide. Anal Chem 27(7):1174–1175

    Article  CAS  Google Scholar 

  30. Amin VM, Olson NF (1967) Spectrophotometric determination of hydrogen peroxide in milk. J Dairy Sci 50(4):461–464

    Article  CAS  Google Scholar 

  31. Ashokkumar M et al (2008) Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innov Food Sci Emerg Technol 9(2):155–160

    Article  CAS  Google Scholar 

  32. Kiani H et al (2011) Ultrasound assisted nucleation of some liquid and solid model foods during freezing. Food Res Int 44(9):2915–2921

    Article  CAS  Google Scholar 

  33. Cesaro A, Belgiorno V (2016) Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): a review. Open Biotechnol J 10(1):151–172

    Article  CAS  Google Scholar 

  34. Han C et al (2013) Green nanotechnology: development of nanomaterials for environmental and energy applications. In: Sustainable nanotechnology and the environment: advances and achievements. ACS Publications, Washington, DC, pp 201–229

    Chapter  Google Scholar 

  35. Vasilyak L (2010) Ultrasound application in systems for the disinfection of water. Surf Eng Appl Electrochem 46(5):489–493

    Article  Google Scholar 

  36. Drakopoulou S et al (2009) Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrason Sonochem 16(5):629–634

    Article  CAS  PubMed  Google Scholar 

  37. Sango DM et al (2014) Assisted ultrasound applications for the production of safe foods. J Appl Microbiol 116(5):1067–1083

    Article  CAS  PubMed  Google Scholar 

  38. Antoniadis A et al (2007) Sonochemical disinfection of municipal wastewater. J Hazard Mater 146(3):492–495

    Article  CAS  PubMed  Google Scholar 

  39. Coleman ST et al (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem 276(1):244–250

    Article  CAS  PubMed  Google Scholar 

  40. Ramond E et al (2014) Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape. PLoS Pathog 10(1):e1003893

    Article  PubMed  PubMed Central  Google Scholar 

  41. Spiteri D et al (2017) Ultrasound processing of liquid system(s) and its antimicrobial mechanism of action. Lett Appl Microbiol 65(4):313–318

    Article  CAS  PubMed  Google Scholar 

  42. Boura M, Brensone D, Karatzas KA (2020) A novel role for the glutamate decarboxylase system in Listeria monocytogenes; protection against oxidative stress. Food Microbiol 85:103284

    Article  CAS  PubMed  Google Scholar 

  43. Patil S et al (2011) Assessing the microbial oxidative stress mechanism of ozone treatment through the responses of Escherichia coli mutants. J Appl Microbiol 111(1):136–144

    Article  CAS  PubMed  Google Scholar 

  44. Joyce E et al (2003) The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions. Ultrason Sonochem 10(4–5):231–234

    Article  CAS  PubMed  Google Scholar 

  45. Bukau B, Walker GC (1989) Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J Bacteriol 171(5):2337–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pomposiello PJ, Demple B (2001) Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19(3):109–114

    Article  CAS  PubMed  Google Scholar 

  47. Chueca B, Pagán R, García-Gonzalo D (2015) Transcriptomic analysis of Escherichia coli MG1655 cells exposed to pulsed electric fields. Innovative Food Sci Emerg Technol 29:78–86

    Article  CAS  Google Scholar 

  48. Harcum SW, Haddadin FT (2006) Global transcriptome response of recombinant Escherichia coli to heat-shock and dual heat-shock recombinant protein induction. J Ind Microbiol Biotechnol 33(10):801–814

    Article  CAS  PubMed  Google Scholar 

  49. King T et al (2010) Transcriptomic analysis of Escherichia coli O157: H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Appl Environ Microbiol 76(19):6514–6528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Royce LA et al (2014) Transcriptomic analysis of carboxylic acid challenge in Escherichia coli: beyond membrane damage. PLoS One 9(2):e89580

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yung PY et al (2016) Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds. Sci Rep 6(1):1–15

    Article  Google Scholar 

  52. Zheng M et al (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183(15):4562–4570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Y et al (2019) Systematic identification and validation of the reference genes from 60 RNA-Seq libraries in the scallop Mizuhopecten yessoensis. BMC Genomics 20(1):1–12

    Google Scholar 

  54. Wecke T, Mascher T (2011) Antibiotic research in the age of omics: from expression profiles to interspecies communication. J Antimicrob Chemother 66(12):2689–2704

    Article  CAS  PubMed  Google Scholar 

  55. Carruthers MD, Minion C (2009) Transcriptome analysis of Escherichia coli O157: H7 EDL933 during heat shock. FEMS Microbiol Lett 295(1):96–102

    Article  CAS  PubMed  Google Scholar 

  56. Shin J-H et al (2010) σB-dependent protein induction in Listeria monocytogenes during vancomycin stress. FEMS Microbiol Lett 308(1):94–100

    Article  CAS  PubMed  Google Scholar 

  57. Batt CA (2014) ESCHERICHIA COLI | Escherichia coli. In: Batt CA, Tortorello ML (eds) Encyclopedia of food microbiology (second edition). Academic Press, Oxford, pp 688–694

    Chapter  Google Scholar 

  58. Philippe N et al (2007) Evolution of global regulatory networks during a long-term experiment with Escherichia coli. BioEssays 29(9):846–860

    Article  PubMed  Google Scholar 

  59. Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4(6):457–469

    Article  CAS  PubMed  Google Scholar 

  60. Pavlov MY, Ehrenberg M (2013) Optimal control of gene expression for fast proteome adaptation to environmental change. Proc Natl Acad Sci 110(51):20527–20532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berney M, Weilenmann H-U, Egli T (2007) Adaptation to UVA radiation of E. coli growing in continuous culture. J Photochem Photobiol B Biol 86(2):149–159

    Article  CAS  Google Scholar 

  62. Wu D et al (2020) Microbial response to some nonthermal physical technologies. Trends Food Sci Technol 95:107–117

    Article  CAS  Google Scholar 

  63. Ferenci T (2019) Irregularities in genetic variation and mutation rates with environmental stresses. Environ Microbiol 21(11):3979–3988

    Article  CAS  PubMed  Google Scholar 

  64. Li J et al (2017) Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy. Ultrason Sonochem 38:711–719

    Article  CAS  PubMed  Google Scholar 

  65. Gallup JM, Ackermann MR (2006) Addressing fluorogenic real-time qPCR inhibition using the novel custom Excel file system ‘FocusField2-6GallupqPCRSet-upTool-001’to attain consistently high fidelity qPCR reactions. Biol Proced Online 8(1):87–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carcel JA et al (2007) High intensity ultrasound effects on meat brining. Meat Sci 76(4):611–619

    Article  CAS  PubMed  Google Scholar 

  67. Gou P, Comaposada J, Arnau J (2003) NaCl content and temperature effects on moisture diffusivity in the Gluteus medius muscle of pork ham. Meat Sci 63(1):29–34

    Article  CAS  PubMed  Google Scholar 

  68. Ozuna C et al (2013) Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. J Food Eng 119(1):84–93

    Article  CAS  Google Scholar 

  69. McDonnell C et al (2014) The effect of ultrasonic salting on protein and water–protein interactions in meat. Food Chem 147:245–251

    Article  CAS  PubMed  Google Scholar 

  70. Ojha KS et al (2016) Ultrasound assisted diffusion of sodium salt replacer and effect on physicochemical properties of pork meat. Int J Food Sci Technol 51(1):37–45

    Article  CAS  Google Scholar 

  71. Inguglia ES et al (2017) Salt reduction strategies in processed meat products—a review. Trends Food Sci Technol 59:70–78

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Ojha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ojha, S., de Oliveira Mallia, J., Spiteri, D., Valdramidis, V., Schlüter, O.K. (2022). Ultrasonic Decontamination and Process Intensification. In: Gavahian, M. (eds) Emerging Food Processing Technologies. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2136-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2136-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2135-6

  • Online ISBN: 978-1-0716-2136-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation