SILIA-Based 4C Quantitative PTM Proteomics

  • Protocol
  • First Online:
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2358))

Abstract

To absolutely and relatively quantitate the alteration of a posttranslationally modified (PTM) proteome in response to a specific internal or external signal, a 15N-stable isotope labeling in Arabidopsis (SILIA) protocol has been integrated into the 4C quantitative PTM proteomics, named as SILIA-based 4C quantitative PTM proteomics (S4Quap). The isotope metabolic labeling produces both forward (F) and reciprocal (R) mixings of either 14N/15N-coded tissues or the 14N/15N-coded total cellular proteins. Plant protein is isolated using a urea-based extraction buffer (UEB). The presence of 8 M urea, 2% polyvinylpolypyrrolidone (PVPP), and 5 mM ascorbic acid allows to instantly denature protein, remove the phenolic compounds, and curb the oxidation by free radicals once plant cells are broken. The total cellular proteins are routinely processed into peptides by trypsin. The PTM peptide yield of affinity enrichment and preparation is 0.1–0.2% in general. Ion exchange chromatographic fractionation prepares the PTM peptides for LC-MS/MS analysis. The collected mass spectrograms are subjected to a target-decoy sequence analysis using various search engines. The computational programs are subsequently applied to analyze the ratios of the extracted ion chromatogram (XIC) of the 14N/15N isotope-coded PTM peptide ions and to perform the statistical evaluation of the quantitation results. The Student t-test values of ratios of quantifiable 14N/15N-coded PTM peptides are normally corrected using a Benjamini-Hochberg (BH) multiple hypothesis test to select the significantly regulated PTM peptide groups (BH-FDR < 5%). Consequently, the highly selected prospect candidate(s) of PTM proteins are confirmed and validated using biochemical, molecular, cellular, and transgenic plant analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdrabou A, Wang Z (2018) Post-translational modification and subcellular distribution of Rac1: an update. Cell 7:263

    Article  CAS  Google Scholar 

  2. Zhao X (2018) SUMO-mediated regulation of nuclear functions and signaling processes. Mol Cell 71:409–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Miller MJ, Scalf M, Rytz TC et al (2013) Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress-induced SUMOylation in arabidopsis. Mol Cell Proteomics 12:449–463

    Article  CAS  PubMed  Google Scholar 

  4. Raposo AE, Piller SC (2018) Protein arginine methylation: an emerging regulator of the cell cycle. Cell Div 13:1–16

    Article  CAS  Google Scholar 

  5. Rape M (2018) Post-translational modifications: ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19:59–70

    Article  CAS  PubMed  Google Scholar 

  6. Hammond CM, Strømme CB, Huang H et al (2017) Histone chaperone networks sha** chromatin function. Nat Rev Mol Cell Biol 18:141–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ajadi AA, Cisse A, Ahmad S et al (2020) Protein phosphorylation and phosphoproteome: an overview of rice. Rice Sci 27:184–200

    Article  Google Scholar 

  8. Zhang Z, Hu M, Feng X et al (2017) Proteomes and phosphoproteomes of anther and pollen: availability and progress. Proteomics 17. https://doi.org/10.1002/pmic.201600458

  9. Mitchell CJ, Getnet D, Kim M-S et al (2015) A multi-omic analysis of human naïve CD4+ T cells. BMC Syst Biol 9:75

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Wang K, Yang Z, Qing D et al (2018) Quantitative and functional posttranslational modification proteomics reveals that TREPH1 plays a role in plant touch-delayed bolting. Proc Natl Acad Sci U S A 115:E10265–E10274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Yang Z, Guo G, Yang N et al (2020) The change of gravity vector induces short-term phosphoproteomic alterations in Arabidopsis. J Proteome 218:103720

    Article  CAS  Google Scholar 

  12. Wang P, Hsu CC, Du Y et al (2020) Map** proteome-wide targets of protein kinases in plant stress responses. Proc Natl Acad Sci U S A 117:3270–3280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Garavelli JS (2004) The RESID database of protein modifications as a resource and annotation tool. Proteomics 4:1527–1533

    Article  CAS  PubMed  Google Scholar 

  14. Huang KY, Su MG, Kao HJ et al (2016) dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins. Nucleic Acids Res 4:435–446

    Article  CAS  Google Scholar 

  15. Mertins P, Udeshi ND, Clauser KR et al (2012) iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol Cell Proteomics 11:1–12

    Article  CAS  Google Scholar 

  16. Guo H, Isserlin R, Lugowski A et al (2014) Large-scale label-free phosphoproteomics: from technology to data interpretation. Bioanalysis 6:2403–2420

    Article  CAS  PubMed  Google Scholar 

  17. Hogrebe A, Von Stechow L, Bekker-Jensen DB et al (2018) Benchmarking common quantification strategies for large-scale phosphoproteomics. Nat Commun 9:1–13

    Article  CAS  Google Scholar 

  18. McBride Z, Chen D, Lee Y et al (2019) A label-free mass spectrometry method to predict endogenous protein complex composition. Mol Cell Proteomics 18:1588–1606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Guo G, Li N (2011) Relative and accurate measurement of protein abundance using 15N stable isotope labeling in Arabidopsis (SILIA). Phytochemistry 72:1028–1039

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Shu Y, Peng C et al (2012) Absolute quantitation of isoforms of post-translationally modified proteins in transgenic organism. Mol Cell Proteomics 11:272–285

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Yang Z, Guo G, Zhang M et al (2013) Stable isotope metabolic labeling-based quantitative phosphoproteomic analysis of arabidopsis mutants reveals ethylene-regulated time-dependent phosphoproteins and putative substrates of constitutive triple response 1 kinase. Mol Cell Proteomics 12:3559–3582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  23. Nelson CJ, Alexova R, Jacoby RP, Harvey Millar A (2014) Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling. Plant Physiol 166:91–108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Lewandowska D, ten Have S, Hodge K et al (2013) Plant SILAC: stable-isotope labelling with amino acids of Arabidopsis seedlings for quantitative proteomics. PLoS One 8:e72207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Dunkley TPJ, Watson R, Griffin JL et al (2004) Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics 3:1128–1134

    Article  CAS  PubMed  Google Scholar 

  26. Engelsberger WR, Erban A, Kopka J, Schulze WX (2006) Metabolic labeling of plant cell cultures with K15NO3 as a tool for quantitative analysis of proteins and metabolites. Plant Methods 2:14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Benschop JJ, Mohammed S, O’Flaherty M et al (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214

    Article  CAS  PubMed  Google Scholar 

  28. Huttlin EL, Hegeman AD, Harms AC, Sussman MR (2007) Comparison of full versus partial metabolic labelling for quantitative proteomics analysis in Arabidopsis thaliana. Mol Cell Proteomics 6:860–881

    Article  CAS  PubMed  Google Scholar 

  29. Nelson CJ, Huttlin EL, Hegeman AD et al (2007) Implications of 15N-metabolic labeling for automated peptide identification in Arabidopsis thaliana. Proteomics 7:1279–1292

    Article  CAS  PubMed  Google Scholar 

  30. Bindschedler LV, Palmblad M, Cramer R (2008) Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. Phytochemistry 69:1962–1972

    Article  CAS  PubMed  Google Scholar 

  31. Hebeler R, Oeljeklaus S, Reidegeld KA et al (2008) Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Mol Cell Proteomics 7:108–120

    Article  CAS  PubMed  Google Scholar 

  32. Schaff JE, Mbeunkui F, Blackburn K et al (2008) SILIP: a novel stable isotope labeling method for in planta quantitative proteomic analysis. Plant J 56:840–854

    Article  CAS  PubMed  Google Scholar 

  33. Arsova B, Kierszniowska S, Schulze WX (2012) The use of heavy nitrogen in quantitative proteomics experiments in plants. Trends Plant Sci 17:102–112

    Article  CAS  PubMed  Google Scholar 

  34. Provart NJ, Alonso J, Assmann SM et al (2016) 50 years of Arabidopsis research: highlights and future directions. New Phytol 209:921–944

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Jensen ON (2009) Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 9:4632–4641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Matros A, Kaspar S, Witzel K, Mock HP (2011) Recent progress in liquid chromatography-based separation and label-free quantitative plant proteomics. Phytochemistry 72:963–974

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Guenther JM, Gin JW et al (2019) Automated “cells-to-peptides” sample preparation workflow for high-throughput, quantitative proteomic assays of microbes. J Proteome Res 18:3752–3761

    Article  CAS  PubMed  Google Scholar 

  38. Al Shweiki MHDR, Mönchgesang S, Majovsky P et al (2017) Assessment of label-free quantification in discovery proteomics and impact of technological factors and natural variability of protein abundance. J Proteome Res 16:1410–1424

    Article  PubMed  CAS  Google Scholar 

  39. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  CAS  PubMed  Google Scholar 

  40. Stepath M, Zülch B, Maghnouj A et al (2020) Systematic comparison of label-free, SILAC, and TMT techniques to study early adaption toward inhibition of EGFR signaling in the colorectal cancer cell line DiFi. J Proteome Res 19:926–937

    Article  CAS  PubMed  Google Scholar 

  41. Liu S, Yu F, Yang Z et al (2018) Establishment of dimethyl labeling-based quantitative acetylproteomics in Arabidopsis. Mol Cell Proteomics 17:1010–1027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Zhu L, Li N (2013) Quantitation, networking, and function of protein phosphorylation in plant cell. Front Plant Sci 3:302

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chen Q, Pan XD, Huang BF, Han JL (2017) Quantification of 16 β-lactams in chicken muscle by QuEChERS extraction and UPLC-Q-Orbitrap-MS with parallel reaction monitoring. J Pharm Biomed Anal 145:525–530

    Article  CAS  PubMed  Google Scholar 

  44. Qing D, Yang Z, Li M et al (2016) Quantitative and functional phosphoproteomic analysis reveals that ethylene regulates water transport via the C-terminal phosphorylation of aquaporin PIP2;1 in Arabidopsis. Mol Plant 9:158–174

    Article  CAS  PubMed  Google Scholar 

  45. Huai Q, **a Y, Chen Y et al (2001) Crystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5′-phosphate provide new insight into catalytic mechanisms. J Biol Chem 276:38210–38216

    Article  CAS  PubMed  Google Scholar 

  46. Li H, Wai SW, Zhu L et al (2009) Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics 9:1646–1661

    Article  CAS  PubMed  Google Scholar 

  47. Zhu L, Liu D, Li Y, Li N (2013) Functional phosphoproteomic analysis reveals that a serine-62-phosphorylated isoform of ethylene response factor110 is involved in arabidopsis bolting. Plant Physiol 161:904–917

    Article  CAS  PubMed  Google Scholar 

  48. Wu R, Haas W, Dephoure N et al (2011) A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods 8:677–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Krysan PJ, Young JC, Tax F et al (1996) Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc Natl Acad Sci U S A 93:8145–8150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Klink VP, Wolniak SM (2000) The efficacy of RNAi in the study of the plant cytoskeleton. J Plant Growth Regul 19:371–384

    Article  CAS  PubMed  Google Scholar 

  51. Heazlewood JI, Durek P, Hummel J et al (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:1015–1021

    Article  CAS  Google Scholar 

  52. Durek P, Schmidt R, Heazlewood JL et al (2010) PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38:D828–D834

    Article  CAS  PubMed  Google Scholar 

  53. Jørgensen C, Linding R (2008) Directional and quantitative phosphorylation networks. Brief Funct Genomic Proteomic 7:1–7

    Article  CAS  Google Scholar 

  54. Tian W, Hou C, Ren Z et al (2019) A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572:131–135

    Article  CAS  PubMed  Google Scholar 

  55. Li J-F, Qu L-H, Li N (2005) Tyr152 plays a central role in the catalysis of 1-aminocyclopropane-1-carboxylate synthase. J Exp Bot 56:2203–2210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants, 31370315, 31570187, 31870231, from National Science Foundation of China and grants, 16101114, 16103817, 16103615, 16100318, 16101819, AOE/M-403-16, from RGC of Hong Kong as well as grants, VPRGO17SC07PG, FP704, IRS18SC17, IRS19SC15, IRS20SC15, SBI18SC04, SJTU19SC03, CRP01, from the HKUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wong, E.O.Y., Li, N. (2021). SILIA-Based 4C Quantitative PTM Proteomics. In: Wu, X.N. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 2358. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1625-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1625-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1624-6

  • Online ISBN: 978-1-0716-1625-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation