Direct Nucleophilic Substitution of Alcohols by Brønsted or Lewis Acids Activation: An Update

  • Protocol
  • First Online:
Green Chemistry in Drug Discovery

Abstract

Typically substitution of alcohols involves a two-step activation/displacement pathway thus leading to the generation of additional waste. The current chapter considers an alternative reaction manifold with the displacement taking place directly through activation of the alcohol by either a Lewis or Brønsted acid. With particular focus on the literature since 2011, an initial overview of carbenium ion reactivity is provided followed by a survey of displacement reactions grouped by the nature of the nucleophile. Finally, advances in both diastereoselective and enantioselective variants of the reaction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 179.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.acs.org/content/acs/en/greenchemistry/industry-business/pharmaceutical.html

  2. Emer E, Sinisi R, Cozzi PG et al (2011) Direct nucleophilic SN1-type reactions of alcohols. Eur J Org Chem:647–666

    Google Scholar 

  3. Zhu Y, Sun L, Lu P et al (2014) Recent advances on the Lewis acid-catalyzed cascade rearrangements of propargylic alcohols and their derivatives. ACS Catal 4:1911–1925

    Article  CAS  Google Scholar 

  4. Chen L, Yin X-P, Wang C-H et al (2014) Catalytic functionalization of tertiary alcohols to fully substituted carbon centres. Org Biomol Chem 12:6033–6048

    Article  CAS  PubMed  Google Scholar 

  5. Chaskar A, Murugan K (2014) Direct allylation of alcohols using allyltrimethylsilane: a move towards an economical and ecological protocol for C-C bond formation. Catal Sci Tech 4:1852–1868

    Article  CAS  Google Scholar 

  6. Baeza A, Najera C (2014) Recent advances in the direct nucleophilic substitution of allylic alcohols through SN1-type reactions. Synthesis 46:25–34

    Article  Google Scholar 

  7. Bandini M, Cera G, Chiarucci M (2012) Catalytic enantioselective alkylations with allylic alcohols. Synthesis 44:504–512

    Article  CAS  Google Scholar 

  8. Naredla R, Klumpp DA (2013) Contemporary carbocation chemistry: applications in organic synthesis. Chem Rev 113:6905–6948

    Article  CAS  PubMed  Google Scholar 

  9. Nigst TA, Ammer J, Mayr H (2012) Photogeneration of benzhydryl cations by near-UV laser flash photolysis of pyridinium salts. J Phys Chem 116:8494–8499

    Article  CAS  Google Scholar 

  10. Mayr H, Kempf B, Ofial AR (2003) π-Nucleophilicity in carbon-carbon bond-forming reactions. Acc Chem Res 36:66–77

    Article  CAS  PubMed  Google Scholar 

  11. Mayr H, Ofial AR (2005) Kinetics of electrophile-nucleophile combinations: a general approach to polar organic reactivity. Pure Appl Chem 77:1807–1821

    Article  CAS  Google Scholar 

  12. Kobayashi S (2013) The new world of organic reaction in water. Pure Appl Chem 85:1089–1101

    Article  CAS  Google Scholar 

  13. Biswas S, Samec JSM (2013) The efficiency of the metal catalysts in the nucleophilic substitution of alcohols is dependent on the nucleophile and not on the electrophile. Chem Asian J 8:974–981

    Article  CAS  PubMed  Google Scholar 

  14. Olah GA, Surya Prakash GK, Bach T et al (2014) Chiral propargylic cations as intermediates in SN1-type reactions: substitution pattern, nuclear magnetic resonance studies, and origin of the diastereoselectivity. J Am Chem Soc 136:2851–2857

    Article  PubMed  Google Scholar 

  15. Li L, Zhu A, Zhang Y et al (2014) Fe2(SO4)3.x.H2O on silica: an efficient and low-cost catalyst for the direct nucleophilic substitution of alcohols in solvent-free conditions. RSC Adv 4:4286–4291

    Article  CAS  Google Scholar 

  16. Pan X, Li M, Gu Y (2014) Fe (OTf)3-catalyzed α-benzylation of aryl methyl ketones with electrophilic secondary and aryl alcohols. Chem Asian J 9:268–274

    Article  CAS  PubMed  Google Scholar 

  17. Koppolu SR, Naveen N, Balamurugan R (2014) Triflic acid promoted direct α-alkylation of unactivated ketones using benzylic alcohols via in situ formed acetals. J Org Chem 79:6069–6078

    Article  CAS  PubMed  Google Scholar 

  18. Nammalwar B, Bunce RA (2013) Friedel–Crafts cyclization of tertiary alcohols using bismuth(III) triflate. Tetrahedron Lett 54:4330–4332

    Article  CAS  Google Scholar 

  19. Nallagonda R, Rehan M, Ghorai P (2014) Chemoselective C-benzylation of unprotected anilines with benzyl alcohols using Re2O7 catalyst. J Org Chem 79:2934–2943

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh S, Kinthada LK, Bhunia S, Bisai A (2012) Lewis acid-catalyzed Friedel–Crafts alkylations of 3-hydroxy-2-oxindole: an efficient approach to the core structure of azonazine. Chem Commun 48:10132–10134

    Article  CAS  Google Scholar 

  21. Zheng H, Lejkowski M, Hall DG (2013) Mild boronic acid catalyzed Nazarov cyclization of divinyl alcohols in tandem with Diels–Alder cycloaddition. Tetrahedron Lett 54:91–94

    Article  CAS  Google Scholar 

  22. Ricardo CL, Mo X, Hall DG (2015) A surprising substituent effect provides a superior boronic acid catalyst for mild and metal-free direct Friedel–Crafts alkylations and prenylations of neutral arenes. Chem Eur J 21:4218–4223

    Article  CAS  PubMed  Google Scholar 

  23. Silveira CC, Mendes SR, Martins GM (2012) Propargylation of aromatic compounds using Ce(OTf)3 as catalyst. Tetrahedron Lett 53:1567–1570

    Article  CAS  Google Scholar 

  24. Masuyama Y, Hayashi H, Suzuki N (2013, 2013) SnCl2-catalyzed propargylic substitution of propargylic alcohols with carbon and nitrogen nucleophiles. Eur J Org Chem:2914–2921

    Google Scholar 

  25. Choi YL, Kim BT, Heo J-N (2012) Total synthesis of Laetevirenol A. J. Org. Chem. 77:8762–8767

    Article  CAS  PubMed  Google Scholar 

  26. Hamon M, Dickinson N, Dalla V et al (2014) Intra- and intermolecular alkylation of N,O-acetals and π-activated alcohols catalyzed by in situ generated acid. J Org Chem 79:1900–1912

    Article  CAS  PubMed  Google Scholar 

  27. Barbero M, Cadamuro S, Dughera S et al (2014) Solvent-free Brønsted acid catalysed alkylation of arenes and heteroarenes with benzylic alcohols. Tetrahedron 70:1818–1826

    Article  CAS  Google Scholar 

  28. Trillo P, Baeza A, Nájera C (2012) Fluorinated alcohols as promoters for the metal-free direct substitution reaction of allylic alcohols with nitrogenated, silylated, and carbon nucleophiles. J Org Chem 77:7344–7354

    Article  CAS  PubMed  Google Scholar 

  29. Westermaier M, Mayr H (2008) Regio- and stereoselective ring-opening reactions of epoxides with indoles and pyrroles in 2,2,2-trifluoroethanol. Chem Eur J 14:1638–1647

    Article  CAS  PubMed  Google Scholar 

  30. Ayala CE, Dange NS, Kartika R et al (2015) Brønsted acid catalysed α′-functionalization of silylenol ethers with indole. Angew Chem Int Ed 54:4641–4645

    Article  CAS  Google Scholar 

  31. Jefferies LR, Cook SP (2014) Alcohols as electrophiles: iron-catalyzed Ritter reaction and alcohol addition to alkynes. Tetrahedron 70:4204–4207

    Article  CAS  Google Scholar 

  32. Zhou F, Ding M, Zhou J (2012) A catalytic metal-free Ritter reaction to 3-substituted 3-aminooxindoles. Org Biomol Chem 10:3178–3181

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, **e X, Liu Y (2012) Facile synthesis of fully substituted dihydro-β-carbolines via Brønsted acid promoted cascade reactions of α-indolyl propargylic alcohols with nitrones. Org Lett 14:5848–5851

    Article  CAS  PubMed  Google Scholar 

  34. Ohshima T, Ipposhi J, Mashima K (2012) Aluminum triflate as a powerful catalyst for direct amination of alcohols, including electron-withdrawing group-substituted benzhydrols. Adv Synth Catal 354:2447–2452

    Article  CAS  Google Scholar 

  35. Masiero S, Cozzi PG, Paolucci F (2014) New approaches toward ferrocene–guanine conjugates: synthesis and electrochemical behavior. Organometallics 33:4986–4993

    Article  Google Scholar 

  36. Trillo P, Baeza A, Nájera C (2013) Direct nucleophilic substitution of free allylic alcohols in water catalyzed by FeCl3·6H2O: which is the real catalyst. ChemCatChem 5:1538–1542

    Article  CAS  Google Scholar 

  37. Trillo P, Baeza A, Nájera C (2012) FeCl3·6H2O and TfOH as catalysts for allylic amination reaction: a comparative study. Eur J Org Chem:2929–2934

    Google Scholar 

  38. Das BG, Nallagonda R, Ghorai P (2012) Direct substitution of hydroxy group of π-activated alcohols with electron-deficient amines using Re2O7 catalyst. J Org Chem 77:5577–5583

    Article  CAS  PubMed  Google Scholar 

  39. Hao L, Wu F, Zhan Z-P et al (2012) Synthesis of acrylonitriles through an FeCl3-catalyzed domino propargylic substitution/aza-Meyer–Schuster rearrangement sequence. Chem Eur J 18:6453–6456

    Google Scholar 

  40. Tummatorn J, Thongsornkleeb C, Ruchirawat S et al (2015) Convenient and direct azidation of sec-benzyl alcohols by trimethylsilyl azide with bismuth(III) triflate catalyst. Synthesis 47:323–329

    Article  CAS  Google Scholar 

  41. Pan J, Li J-Q, **ong Y et al (2015) Metal-free direct N-benzylation of sulfonamides with benzyl alcohols by employing boron trifluoride–diethyl ether complex. Synthesis 47:1101–1108

    Article  CAS  Google Scholar 

  42. Han F, Yang L, **a C et al (2012) Sulfonic acid-functionalized ionic liquids as metal-free, efficient and reusable catalysts for direct amination of alcohols. Adv Synth Catal 354:1052–1060

    Article  CAS  Google Scholar 

  43. Allali N, Mamane V (2012) Al(OTf)3 as a new efficient catalyst for the direct nucleophilic substitution of ferrocenyl alcohol substrates. Convenient preparation of ferrocenyl-PEG Compounds. Tetrahedron Lett 53:2604–2607

    Article  CAS  Google Scholar 

  44. Madabhushi S, Jillella R, Godala KR et al (2012) An efficient and simple method for synthesis of 2,2-disubstituted-2H-chromenes by condensation of a phenol with a 1,1-disubstituted propargyl alcohol using BF3.Et2O as the catalyst. Tetrahedron Lett 53:5275–5279

    Article  CAS  Google Scholar 

  45. Hellal M, Falk FC, Moran J et al (2014) Breaking the dichotomy of reactivity vs. chemoselectivity in catalytic SN1 reactions of alcohols. Org Biomol Chem 12:5990–5994

    Article  CAS  PubMed  Google Scholar 

  46. Mirzaei A, Biswas S, Samec JSM (2012) Iron(III)-catalyzed nucleophilic substitution of the hydroxy group in benzoin by alcohols. Synthesis 44:1213–1218

    Article  CAS  Google Scholar 

  47. Calmus L, Corbu A, Cossy J (2015) 2H-Chromenes generated by an iron(III) complex-catalyzed allylic cyclization. Adv Synth Catal 57:1381–1386

    Article  Google Scholar 

  48. Mukherjee P, Widenhoefer RA (2013) The regio- and stereospecific intermolecular dehydrative alkoxylation of allylic alcohols catalyzed by a gold(I) N-heterocyclic carbene complex. Chem Eur J 19:3437–3444

    Article  CAS  PubMed  Google Scholar 

  49. Zhang F-Z, Tian Y, Qu J et al (2015) Intramolecular etherification and polyene cyclization of π-activated alcohols promoted by hot water. J Org Chem 80:1107–1115

    Article  CAS  PubMed  Google Scholar 

  50. Li P-F, Wang H-L, Qu J (2014) 1,n-rearrangement of allylic alcohols promoted by hot water: application to the synthesis of navenone B, a polyene natural product. J Org Chem 79:3955–3962

    Article  CAS  PubMed  Google Scholar 

  51. Begouin J-M, Niggemann M (2013) Calcium-based Lewis acid catalysts. Chem Eur J 19:8030–8041

    Article  CAS  PubMed  Google Scholar 

  52. Stopka T, Niggemann M (2015) Cyclopentanone as a cation-stabilizing electron-pair donor in the calcium-catalyzed intermolecular carbohydroxylation of alkynes. Org Lett 17:1437–1440

    Article  CAS  PubMed  Google Scholar 

  53. Fu L, Niggemann M (2015) Calcium-catalyzed carboarylation of alkynes. Chem Eur J 21:6367–6370

    Article  CAS  PubMed  Google Scholar 

  54. Meyer VJ, Ascheberg C, Niggemann M (2015) Calcium-catalyzed formal [2+2+2] cycloaddition. Chem Eur J 21:6371–6374

    Article  CAS  PubMed  Google Scholar 

  55. Gómez AM, Lobo F, López JC et al (2013) Recent developments in the Ferrier rearrangement. Eur J Org Chem:7221–7262

    Google Scholar 

  56. Wen J-J, Zhu Y, Zhan Z-P (2012) The synthesis of aromatic heterocycles from propargylic compounds. Asian J Org Chem 1:108–129

    Article  CAS  Google Scholar 

  57. Pennell MN, Turner PG, Sheppard TD (2012) Gold-and silver-catalyzed reactions of propargylic alcohols in the presence of protic additives. Chem Eur J 18:4748–4758

    Article  CAS  PubMed  Google Scholar 

  58. Okamoto N, Sueda T, Yanada R (2014) Bi(OTf)3-catalyzed tandem Meyer–Schuster rearrangement and 1,4-addition to the resulting vinyl ketone. J Org Chem 79:9854–9859

    Article  CAS  PubMed  Google Scholar 

  59. Wagh KV, Bhanage BM (2015) Synthesis of substituted aryl ketones by addition of alcohols to alkynes using amberlyst-15/ionic liquid as a recyclable catalytic system. Synthesis 26:759–764

    CAS  Google Scholar 

  60. Francos J, Borge J, Cadierno V et al (2015) Easy entry to donor/acceptor butadiene dyes through a MW-assisted InCl3-catalyzed coupling of propargylic alcohols with indan-1,3-dione in water. Catal Commun 63:10–14

    Article  CAS  Google Scholar 

  61. Palmer LI, de Alaniz JR (2014) Acid catalyzed rearrangement of furylcarbinols: the aza- and oxa-piancatelli cascade reaction. Synlett 25:8–11

    CAS  Google Scholar 

  62. Ayers BJ, Chan PWH (2015) Harnessing the versatile reactivity of propargyl alcohols and their derivatives for sustainable complex molecule synthesis. Synlett 26. https://doi.org/10.1055/s-0034-1380402

  63. Palmer LI, Read de Alaniz J (2013) Rapid and stereoselective synthesis of spirocyclic ethers via the intramolecular Piancatelli rearrangement. Org Lett 15:476–479

    Article  CAS  PubMed  Google Scholar 

  64. Yin G, Lu P, Wang Y et al (2013) Lewis acid-promoted cascade reaction of primary amine, 2-butynedioate, and propargylic alcohol: a convenient approach to 1,2-dihydropyridines and 1H-pyrrolo[3,4-b]pyridine-5,7(2H,6H)-diones. Tetrahedron 69:8353–8359

    Article  CAS  Google Scholar 

  65. Yeh M-C P, Liang C-J, Fan C-W et al (2012) Synthesis of 2-azaspiro[4.6]undec-7-enes from N-tosyl-N-(3-arylpropargyl)-tethered 3-methylcyclohex-2-en-1-ols. J Org Chem 77:9707–9717

    Article  PubMed  Google Scholar 

  66. Dethe DH, Murhade G (2013) FeCl3 catalyzed prins-type cyclization for the synthesis of highly substituted indenes: application to the total synthesis of (±)-jungianol and epi-jungianol. Org Lett 15:429–431

    Article  CAS  PubMed  Google Scholar 

  67. Phipps RJ, Hamilton GL, Toste FD (2012) The progression of chiral anions from concepts to applications in asymmetric catalysis. Nat Chem 4:603–614

    Article  CAS  PubMed  Google Scholar 

  68. Parmar D, Sugiono E, Rue** M et al (2014) Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem Rev 114:9047–9153

    Article  CAS  PubMed  Google Scholar 

  69. Cozzi PG, Benfatti F (2010) Stereoselective reactions with stabilized carbocations. Angew Chem Int Ed 49:256–259

    Article  CAS  Google Scholar 

  70. Chénard E, Hanessian S (2014) Kinetic diastereomer differentiation in Au(III)- and Bi(III)-catalyzed benzylic arylation: concise and stereocontrolled synthesis of 2-Amino-1,1 diarylalkanes. Org Lett 16:2668–2671

    Article  PubMed  Google Scholar 

  71. Gualandi A, Mengozzi L, Cozzi PG et al (2015) Stereosective catalytic addition of nucleophiles to isoquinolinium and 3,4-dihydroisoquinolinium ions: a simple approach to the synthesis of isoquinoline alkaloids. Catal Lett 145:398–419

    Article  CAS  Google Scholar 

  72. Szostak M, Sautier B, Procter DJ (2014) Stereoselective capture of N-acyliminium ions generated from α-hydroxy-N-acylcarbamides: direct synthesis of uracils from barbituric acids enabled by SmI2 reduction. Org Lett 16:452–455

    Article  CAS  PubMed  Google Scholar 

  73. Szostak M, Sautier B, Procter DJ (2014) Structural analysis and reactivity of unusual tetrahedral intermediates enabled by SmI2-mediated reduction of barbituric acids: vinylogous N-acyliminium additions to α-hydroxy-N-acyl-carbamides. Chem Commun 50:2518–2521

    Article  CAS  Google Scholar 

  74. Petruzziello D, Gualandi A, Cozzi PG et al (2012) Direct and stereoselective alkylation of nitro derivatives with activated alcohols in trifluoroethanol. Eur J Org Chem:6697–6701

    Google Scholar 

  75. Guo C, Song J, Gong L-Z et al (2012) Core-structure-oriented asymmetric organocatalytic substitution of 3-hydroxyoxindoles: application in the enantioselective total synthesis of (+)-folicanthine. Angew Chem Int Ed 51:1046–1048

    Article  CAS  Google Scholar 

  76. Song L, Guo Q-X, Peng Y-G et al (2012) The direct asymmetric α-alkylation of ketones by Brønsted acid catalysis. Angew Chem Int Ed 51:1899–1902

    Article  CAS  Google Scholar 

  77. Barbero M, Buscaino R, Cozzi PG et al (2015) Synthesis of bench-stable diarylmethylium tetrafluoroborates. J Org Chem 80:4791–4796

    Article  CAS  PubMed  Google Scholar 

  78. Shi F, Zhu R-Y, Tu S-J et al (2014) Catalytic asymmetric formal [3+3] cycloaddition of an azomethine ylide with 3-indolylmethanol: enantioselective construction of a six-membered piperidine framework. Chem Eur J 20:2597–2604

    Article  CAS  PubMed  Google Scholar 

  79. Trost BM, Crawley ML (2003) Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem Rev 103:2921–2934

    Article  CAS  PubMed  Google Scholar 

  80. Gualandi A, Mengozzi L, Cozzi PG et al (2014) Synergy, compatibility, and innovation: merging Lewis acids with stereoselective enamine catalysis. Chem Asian J 9:984–995

    Article  CAS  PubMed  Google Scholar 

  81. Christ P, Berkessel A, O’Donaghue AC et al (2011) pKa Values of chiral Brønsted acid catalysts: phosphoric acids/amides, sulfonyl/sulfuryl imides, and perfluorinated TADDOLs (TEFDDOLs). Chem Eur J 17:8524–8528

    Article  CAS  PubMed  Google Scholar 

  82. Wang P-S, Zhou X-L, Gong L-Z (2014) An organocatalytic asymmetric allylic alkylation allows enantioselective total synthesis of hydroxymetasequirin-A and metasequirin-B tetramethyl ether diacetates. Org Lett 16:976–979

    Article  CAS  PubMed  Google Scholar 

  83. Trillo P, Baeza A, Nájera C (2014) (2-Aminobenzoimidazole)-organocatalyzed asymmetric alkylation of activated methylene compounds with benzylic and allylic alcohols. Synthesis 46:3399–3414

    Article  CAS  Google Scholar 

  84. Cozzi PG, Benfatti F, Zoli L (2009) Organocatalytic asymmetric alkylation of aldehydes by SN1-type reaction of alcohols. Angew Chem Int Ed 48:1313–1316

    Article  CAS  Google Scholar 

  85. Stiller J, Behr A, Christmann M et al (2012) Enantioselective tandem reactions at elevated temperatures: one-pot hydroformylation/SN1 alkylation. Chem Eur J 18:9496–9499

    Article  CAS  PubMed  Google Scholar 

  86. Trifonidou M, Kokotos CG (2012) Enantioselective organocatalytic α-alkylation of ketones by SN1-type reaction of alcohols. Eur J Org Chem:1563–1568

    Google Scholar 

  87. Song J, Guo C, Gong L-Z (2013) Enantioselective organocatalytic construction of hexahydropyrroloindole by means of α-alkylation of aldehydes leading to the total synthesis of (+)-gliocladin C. Chem Eur J 19:3319–3323

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Y, Wang S-Y, Ji J (2013) Asymmetric α-alkylation of aldehydes with 3-hydroxy-3-indolylox-indoles in aqueous media. Org Biomol Chem 11:1933–1937

    Article  CAS  PubMed  Google Scholar 

  89. Guo Z-L, Xue J-H, Guo Q-X et al (2014) The direct asymmetric alkylation of α-amino aldehydes with 3-indolylmethanols by enamine catalysis. Org Lett 16:6472–6475

    Article  CAS  PubMed  Google Scholar 

  90. Petruzziello D, Stenta M, Cozzi PG et al (2014) A rational approach towards a new ferrocenyl pyrrolidine for stereoselective enamine catalysis. Chem Eur J 19:7696–7000

    Article  Google Scholar 

  91. Bandini M, Bottoni A, Miscione GP (2012) Mechanistic insights into enantioselective gold-catalyzed allylation of indoles with alcohols: the counterion effect. J Am Chem Soc 134:20690–20700

    Article  CAS  PubMed  Google Scholar 

  92. Li N, Wang T-Y, Gong L-Z et al (2015) Gold-catalyzed multiple cascade reaction of 2-alkynylphenylazides with propargyl alcohols. Chem Eur J 21:3585–3588

    Article  CAS  PubMed  Google Scholar 

  93. Basavaiah D, Reddy BS, Badsara SS (2010) Recent contributions from the Baylis–Hillman reaction to organic chemistry. Chem Rev 110:5447–5674

    Article  CAS  PubMed  Google Scholar 

  94. Takizawa S, Arteaga Arteaga F, Sasai H et al (2014) Facile regio- and stereoselective metal-free synthesis of all-carbon tetrasubstituted alkenes bearing a C(sp3)–F unit via dehydroxyfluorination of Morita–Baylis–Hillman (MBH) adducts. Org Lett 16:4162–4165

    Article  CAS  PubMed  Google Scholar 

  95. Horn M, Mayr H, Ofial AR et al (2013) Towards a comprehensive hydride donor ability scale. Chem Eur J 19:249–263

    Article  CAS  PubMed  Google Scholar 

  96. Sawadjoon S, Lundstedt A, Samec JS (2013) Pd-catalyzed transfer hydrogenolysis of primary, secondary, and tertiary benzylic alcohols by formic acid: a mechanistic study. ACS Catal 3:635–642

    Article  CAS  Google Scholar 

  97. Prieto C, Arteaga JF, Jaraíz M et al (2015) Homocoupling versus reduction of radicals: an experimental and theoretical study of Ti(III)- mediated deoxygenation of activated alcohols. Org Biomol Chem 13:3462–3469

    Article  CAS  PubMed  Google Scholar 

  98. McMurry JE (1989) Carbonyl-coupling reactions using low-valent titanium. Chem Rev 89:1513–1524

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Giorgio Cozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cozzi, P.G., Gualandi, A., Mengozzi, L., Manoni, E., Wilson, C.M. (2022). Direct Nucleophilic Substitution of Alcohols by Brønsted or Lewis Acids Activation: An Update. In: Richardson, P.F. (eds) Green Chemistry in Drug Discovery. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1579-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1579-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1577-5

  • Online ISBN: 978-1-0716-1579-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation