Production of Haploid and Doubled Haploid Lines in Nut Crops: Persian Walnut, Almond, and Hazelnut

  • Protocol
  • First Online:
Doubled Haploid Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2289))

Abstract

This chapter deals with induction of haploidy via parthenogenesis in Persian walnut and via microspore embryogenesis in almond and hazelnut. Haploid induction through in situ parthenogenesis using pollination with irradiated pollen to stimulate the embryogenic development of the egg cell, followed by in vitro culture of the immature haploid embryos. Microspore embryogenesis allows the induction of immature pollen grains (microspores), to move away from the normal gametophytic developmental route in the direction of the sporophytic one, yielding homozygous organisms (embryos in this case). Unlike other fruit crops (such as Citrus), regeneration of entire plants has not yet been obtained in our studied nut crops; however, it gives the methodology should be used to continue the roadmap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vahdati K, Arab MM, Sarikhani S, Sadat-Hosseini M, Leslie CA, Brown PJ (2019) Advances in Persian Walnut (Juglans regia L.) breeding strategies. In: Advances in plant breeding strategies: nut and beverage crops. Springer, Cham, pp 401–472

    Chapter  Google Scholar 

  2. FAOSTAT (2018). http://www.fao.org/about/en

  3. Rovira MN, Aleta E, Arus P (1993) Inheritance and linkage relationships of ten isozyme genes in hazelnut. Theor Appl Genet 86:322–328

    Article  CAS  PubMed  Google Scholar 

  4. Martínez-Gómez P, Sánchez-Pérez R, Vaknin Y, Dicenta F, Gradziel TM (2005) Improved technique for counting chromosomes in almond. Sci Hortic 105:139–143

    Article  Google Scholar 

  5. Socias i Company R (1998) Fruit tree genetics at a turning point: the almond example. Theor Appl Genet 96:588–601

    Article  Google Scholar 

  6. Vahdati K, Lotfi N (2013) Abiotic stress tolerance in plants with emphasizing on drought and salinity stresses in walnut. Abiotic Stress Plant Responses Appl Agric 10:307–365

    Google Scholar 

  7. Sadat-Hosseini M, Bakhtiarizadeh MR, Boroomand N, Tohidfar M, Vahdati K (2020) Combining independent de novo assemblies to optimize leaf transcriptome of Persian walnut. PLoS One 15:e0232005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mehlenbacher SA, Brown RN, Nouhra ER, Gökirmak T, Bassil NV, Kubisiak TL (2006) A genetic linkage map for hazelnut (Corylus avellana L.) based on RAPD and SSR markers. Genome 49:122

    Article  CAS  PubMed  Google Scholar 

  9. Khush GS, Virmani SS (1996) Haploids in plant breeding. In: In vitro haploid production in higher plants. Springer, Dordrecht, pp 11–33

    Chapter  Google Scholar 

  10. Germanà MA (2009) Haploids and doubled haploids in fruit trees. In: Touraev A, Forster B, Jain M (eds) Advances in haploid production in higher plants. Springer, Heidelberg, pp 241–263

    Chapter  Google Scholar 

  11. Grouh MSH, Vahdati K, Lotfi M, Hassani D, Biranvand NP (2011) Production of haploids in Persian walnut through parthenogenesis induced by gamma-irradiated pollen. J Am Soc Hortic Sci 136:198–204

    Article  CAS  Google Scholar 

  12. Vahdati K, Lotfi M, Sadat-Hosseini M (2012) Karyotype analysis of haploid plants of walnut (Juglans regia L.). Acta Hortic 1048:225–228

    Google Scholar 

  13. Germanà MA (2011a) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ 104:283–300

    Article  Google Scholar 

  14. Germanà MA (2011b) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857

    Article  PubMed  Google Scholar 

  15. Zhu T, Wang L, You FM, Rodriguez JC, Deal KR, Chen L, Li J, Chakraborty S, Balan B, Jiang CZ, Brown PJ, Leslie CA, Aradhya MK, Dandekar AM, McGuire PE, Kluepfel D, Dvorak J, Luo M-C (2019) Sequencing a Juglans regia × J. microcarpa hybrid yields high-quality genome assemblies of parental species. Hortic Res 6:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Selvaraj S, Dixon JR, Bansal V, Ren B (2013) Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat Biotechnol 31:1111–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A (2013) The high-quality draft of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genet 45:487–494

    Google Scholar 

  18. Martínez-García PJ, Crepeau MR, Puiu D, Gonzalez-Ibeas D, Whalen J, Stevens KA, Paul R, Butterfield TS, Britton MT, Reagan RL, Chakraborty S (2016) The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols. Plant J 87:507–532

    Google Scholar 

  19. Sánchez-Pérez PS, Mazzeo R, Moldovan R, Cigliano RA, Del Cueto J, Ricciardi F, Lotti C, Ricciardi L, Dicenta F, López-Marqués RL (2019) Mutation of a bHLH transcription factor allowed almond domestication. Science 364:1095–1098

    Google Scholar 

  20. Rowley ER, VanBuren R, Bryant DW, Priest HD, Mehlenbacher SM, Mockler TC (2018) A draft genome and high-density genetic map of European hazelnut (Corylus avellana L.). bioRxiv. https://doi.org/10.1101/469015

  21. Martínez-Gómez P, Crisosto C, Bonghi C, Rubio M (2011) New approaches to Prunus transcriptome analysis. Genetica 139:755–769

    Article  PubMed  Google Scholar 

  22. Campoy JA, Sun H, Goel1 M, Jiao WB, Folz-Donahue K, Kukat C, Rubio M, Ruiz D, Huettel B, Schneeberger K (2020) Chromosome-level and haplotype-1 resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes. bioRxiv. https://doi.org/10.1101/2020.04.24.060046

  23. Driver JA, Kuniyuki AH (1984) In vitro propagation of paradox walnut rootstock. HortScience 19:507–509

    Google Scholar 

  24. Chu C (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium on plant tissue culture. Science Press, Peking, pp 43–50

    Google Scholar 

  25. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–85

    Article  CAS  PubMed  Google Scholar 

  26. Murashige T, Skoog F (1962) A Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  27. Woeste K, Burns R, Rhodes O, Michler C (2002) Thirty polymorphic nuclear microsatellite loci from black walnut. J Hered 93:58–60

    Article  CAS  PubMed  Google Scholar 

  28. Cimò G, Marchese A, Germanà MA (2017) Microspore embryogenesis induced through in vitro anther culture of almond (Prunus dulcis Mill.). Plant Cell Tissue Organ Cult 128:85–95

    Article  Google Scholar 

  29. Cimò G, Germanà MA (2018) Microspore embryogenesis in almond (Prunus dulcis Mill.). In: Jain SM, Gupta PK (eds) Stepwise protocols for somatic embryogenesis of woody plants, vol 2. Springer, Berlin, pp 63–72

    Chapter  Google Scholar 

  30. Gniech Karasawa MM, Chiancone B, Gianguzzi V, Abdelgalel AM, Botta R, Sartor C, Germanà MA (2016) Gametic embryogenesis through isolated microspore culture in Corylus avellana L. Plant Cell Tissue Organ Cult 124:635–647

    Article  Google Scholar 

  31. Doyle JJ, Doyle JH (1987) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  32. Sadat-Hosseini M, Vahdati K, Leslie CA (2019) Germination of Persian walnut somatic embryos and evaluation of their genetic stability by ISSR fingerprinting and flow cytometry. HortScience 54:1576–1580

    Article  CAS  Google Scholar 

  33. Liu L, Huang L, Li Y (2013) Influence of boric acid and sucrose on the germination and growth of areca pollen. Am J Plant Sci 4:1669–1674

    Article  CAS  Google Scholar 

  34. Germanà MA (2006) Doubled haploid production in fruit crops. Plant Cell Tissue Organ 86:131

    Article  Google Scholar 

  35. Powell W (1990) Environmental and genetic aspects of pollen embryogenesis. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, part I. Haploids in crop improvement. Springer, Berlin, pp 44–65

    Google Scholar 

  36. Cardoso JC, Martinelli AP, Germanà MA, Latado RR (2014) In vitro anther culture of sweet orange (Citrus sinensis L. Osbeck) genotypes and of a C. clementina × C. sinensis ‘Hamlin’ hybrid. Plant Cell Tissue Organ 117:455–464

    Article  Google Scholar 

  37. Chiancone B, Germanà MA (2016) Microspore embryogenesis through anther culture in Citrus clementina Hort. ex Tan. In: Germanà M, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer, New York, NY, pp 475–487

    Chapter  Google Scholar 

  38. Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404

    Article  Google Scholar 

  39. Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol 4:251–261

    Article  CAS  Google Scholar 

  40. Boccacci P, Botta R, Rovira M (2008) Genetic diversity of hazelnut (Corylus avellana L.) germplasm in Northeastern Spain. Hortic Sci 43:667–672

    Google Scholar 

  41. Heberle-Bors E (1989) Isolated pollen culture in tobacco: plant reproductive development in a nutshell. Sex Plant Reprod 2:1–10

    Google Scholar 

  42. Raghavan V (1990) From microspore to embryo: faces of the angiosperm pollen grain. In: Nijkamp HJJ, Van der Plas LHW, Van Aartrigik J (eds) Progress in plant cellular and molecular biology. Springer, Dordrecht, pp 213–221

    Google Scholar 

Download references

Acknowledgments

The Authors thank all people working on gametic embryogenesis of nut crops. Iran National Science Foundation (INSF) and Center of Excellence for Walnut Improvement and Technology of Iran are acknowledged for their supports. This review has been partially supported by project “Breeding stone fruit species assisted by molecular tools” from the Seneca Foundation of the Region of Murcia in Spain (19879/GERM/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Vahdati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vahdati, K., Sadat-Hosseini, M., Martínez-Gómez, P., Germanà, M.A. (2021). Production of Haploid and Doubled Haploid Lines in Nut Crops: Persian Walnut, Almond, and Hazelnut. In: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2289. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1331-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1331-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1330-6

  • Online ISBN: 978-1-0716-1331-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation