Cationic Dendrimers for siRNA Delivery: An Overview of Methods for In Vitro/In Vivo Characterization

  • Protocol
  • First Online:
Design and Delivery of SiRNA Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2282))

Abstract

This chapter reviews the different techniques for analyzing the chemical-physical properties, transfection efficiency, cytotoxicity, and stability of covalent cationic dendrimers (CCDs) and self-assembled cationic dendrons (ACDs) for siRNA delivery in the presence and absence of their nucleic cargos. On the basis of the reported examples, a standard essential set of techniques is described for each step of a siRNA/nanovector (NV) complex characterization process: (1) analysis of the basic chemical-physical properties of the NV per se; (2) characterization of the morphology, size, strength, and stability of the siRNA/NV ensemble; (3) characterization and quantification of the cellular uptake and release of the siRNA fragment; (4) in vitro and (5) in vivo experiments for the evaluation of the corresponding gene silencing activity; and (6) assessment of the intrinsic toxicity of the NV and the siRNA/NV complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anguela XM, High KA (2019) Entering the modern era of gene therapy. Annu Rev Med 70(1):273–288. https://doi.org/10.1146/annurev-med-012017-043332

    Article  CAS  PubMed  Google Scholar 

  2. Ahmadzada T, Reid G, McKenzie DR (2018) Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev 10(1):69–86. https://doi.org/10.1007/s12551-017-0392-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu B, Weng Y, **a XH, Liang XJ, Huang Y (2019) Clinical advances of siRNA therapeutics. J Gene Med 21(7):e3097. https://doi.org/10.1002/jgm.3097

    Article  PubMed  Google Scholar 

  4. Setten RL, Rossi JJ, Han SP (2019) The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 18(6):421–446. https://doi.org/10.1038/s41573-019-0017-4

    Article  CAS  PubMed  Google Scholar 

  5. Marquez AR, Madu CO, Lu Y (2018) An overview of various carriers for siRNA delivery. Oncomedicine 3:48–58. https://doi.org/10.7150/oncm.25785

    Article  Google Scholar 

  6. Grimm D (2011) The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression. Silence 2:8. https://doi.org/10.1186/1758-907X-2-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khalil IA, Yamada Y, Harashima H (2018) Optimization of siRNA delivery to target sites: issues and future directions. Expert Opin Drug Deliv 15(11):1053–1065. https://doi.org/10.1080/17425247.2018.1520836

    Article  CAS  PubMed  Google Scholar 

  8. Mignani S, Rodrigues J, Roy R, Shi X, Cena V, El Kazzouli S, Majoral JP (2019) Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: key factor analysis (Part 2). Drug Discov Today 24(5):1184–1192. https://doi.org/10.1016/j.drudis.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  9. Wu J, Huang W, He Z (2013) Dendrimers as carriers for siRNA delivery and gene silencing: a review. ScientificWorldJournal 2013:630654. https://doi.org/10.1155/2013/630654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pavan GM, Posocco P, Tagliabue A, Maly M, Malek A, Danani A, Ragg E, Catapano CV, Pricl S (2010) PAMAM dendrimers for siRNA delivery: computational and experimental insights. Chemistry 16(26):7781–7795. https://doi.org/10.1002/chem.200903258

    Article  CAS  PubMed  Google Scholar 

  11. Zhou J, Wu J, Hafdi N, Behr JP, Erbacher P, Peng L (2006) PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem Commun (Camb) 22:2362–2364. https://doi.org/10.1039/b601381c

    Article  CAS  Google Scholar 

  12. Posocco P, Liu X, Laurini E, Marson D, Chen C, Liu C, Fermeglia M, Rocchi P, Pricl S, Peng L (2013) Impact of siRNA overhangs for dendrimer-mediated siRNA delivery and gene silencing. Mol Pharm 10(8):3262–3273. https://doi.org/10.1021/mp400329g

    Article  CAS  PubMed  Google Scholar 

  13. Liu XX, Rocchi P, Qu FQ, Zheng SQ, Liang ZC, Gleave M, Iovanna J, Peng L (2009) PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem 4(8):1302–1310. https://doi.org/10.1002/cmdc.200900076

    Article  CAS  PubMed  Google Scholar 

  14. Marson D, Laurini E, Aulic S, Fermeglia M, Pricl S (2019) Evolution from covalent to self-assembled PAMAM-based dendrimers as nanovectors for siRNA delivery in cancer by coupled in silico-experimental studies. Part I: Covalent siRNA nanocarriers. Pharmaceutics 11(7):351. https://doi.org/10.3390/pharmaceutics11070351

    Article  CAS  PubMed Central  Google Scholar 

  15. Taratula O, Savla R, He H, Minko T (2011) Poly(propyleneimine) dendrimers as potential siRNA delivery nanocarrier: from structure to function. Int J Nanotechnol 8(1/2). https://doi.org/10.1504/ijnt.2011.037169

  16. Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9):1401. https://doi.org/10.3390/molecules22091401

    Article  CAS  PubMed Central  Google Scholar 

  17. Watanabe K, Harada-Shiba M, Suzuki A, Gokuden R, Kurihara R, Sugao Y, Mori T, Katayama Y, Niidome T (2009) In vivo siRNA delivery with dendritic poly(L-lysine) for the treatment of hypercholesterolemia. Mol Biosyst 5(11):1306–1310. https://doi.org/10.1039/b900880b

    Article  CAS  PubMed  Google Scholar 

  18. Kodama Y, Kuramoto H, Mieda Y, Muro T, Nakagawa H, Kurosaki T, Sakaguchi M, Nakamura T, Kitahara T, Sasaki H (2017) Application of biodegradable dendrigraft poly-l-lysine to a small interfering RNA delivery system. J Drug Target 25(1):49–57. https://doi.org/10.1080/1061186X.2016.1184670

    Article  CAS  PubMed  Google Scholar 

  19. Jiménez JL, Gómez R, Briz V, Madrid R, Bryszewsk M, de la Mata FJ, Muñoz-Fernández MÁ (2012) Carbosilane dendrimers as carriers of siRNA. J Drug Deliv Sci Technol 22(1):75–82. https://doi.org/10.1016/s1773-2247(12)50007-9

    Article  Google Scholar 

  20. Marson D, Laurini E, Posocco P, Fermeglia M, Pricl S (2015) Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair. Nanoscale 7(9):3876–3887. https://doi.org/10.1039/c4nr04510f

    Article  CAS  PubMed  Google Scholar 

  21. Herma R, Wrobel D, Liegertova M, Mullerova M, Strasak T, Maly M, Semeradtova A, Stofik M, Appelhans D, Maly J (2019) Carbosilane dendrimers with phosphonium terminal groups are low toxic non-viral transfection vectors for siRNA cell delivery. Int J Pharm 562:51–65. https://doi.org/10.1016/j.ijpharm.2019.03.018

    Article  CAS  PubMed  Google Scholar 

  22. Maiti PK, Çaın T, Wang G, Goddard WA (2004) Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules 37(16):6236–6254. https://doi.org/10.1021/ma035629b

  23. Laurini E, Marson D, Aulic S, Fermeglia M, Pricl S (2019) Evolution from covalent to self-assembled PAMAM-based dendrimers as nanovectors for siRNA delivery in cancer by coupled in silico-experimental studies. Part II: Self-assembled siRNA nanocarriers. Pharmaceutics 11(7). https://doi.org/10.3390/pharmaceutics11070324

  24. Svenson S (2015) The dendrimer paradox—high medical expectations but poor clinical translation. Chem Soc Rev 44(12):4131–4144. https://doi.org/10.1039/c5cs00288e

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Ding S, Zhang Z, Wang L, You Y (2019) Cationic micelle: a promising nanocarrier for gene delivery with high transfection efficiency. J Gene Med 21(7):e3101. https://doi.org/10.1002/jgm.3101

    Article  CAS  PubMed  Google Scholar 

  26. Yu T, Liu X, Bolcato-Bellemin AL, Wang Y, Liu C, Erbacher P, Qu F, Rocchi P, Behr JP, Peng L (2012) An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew Chem Int Ed Engl 51(34):8478–8484. https://doi.org/10.1002/anie.201203920

    Article  CAS  PubMed  Google Scholar 

  27. Chen C, Posocco P, Liu X, Cheng Q, Laurini E, Zhou J, Liu C, Wang Y, Tang J, Col VD, Yu T, Giorgio S, Fermeglia M, Qu F, Liang Z, Rossi JJ, Liu M, Rocchi P, Pricl S, Peng L (2016) Mastering dendrimer self-assembly for efficient siRNA delivery: from conceptual design to in vivo efficient gene silencing. Small 12(27):3667–3676. https://doi.org/10.1002/smll.201503866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Zhou J, Yu T, Chen C, Cheng Q, Sengupta K, Huang Y, Li H, Liu C, Wang Y, Posocco P, Wang M, Cui Q, Giorgio S, Fermeglia M, Qu F, Pricl S, Shi Y, Liang Z, Rocchi P, Rossi JJ, Peng L (2014) Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. Angew Chem Int Ed Engl 53(44):11822–11827. https://doi.org/10.1002/anie.201406764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Babu A, Muralidharan R, Amreddy N, Mehta M, Munshi A, Ramesh R (2016) Nanoparticles for siRNA-based gene silencing in tumor therapy. IEEE Trans Nanobioscience 15(8):849–863. https://doi.org/10.1109/TNB.2016.2621730

    Article  PubMed  PubMed Central  Google Scholar 

  30. Singha K, Namgung R, Kim WJ (2011) Polymers in small-interfering RNA delivery. Nucleic Acid Ther 21(3):133–147. https://doi.org/10.1089/nat.2011.0293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8(4):409–427. https://doi.org/10.1007/s12551-016-0218-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang X, Guerrand L, Wu B, Li X, Boldon L, Chen W-R, Liu L (2012) Characterizations of polyamidoamine dendrimers with scattering techniques. Polymers 4(1):600–616. https://doi.org/10.3390/polym4010600

    Article  CAS  Google Scholar 

  33. Carvalho PM, Felicio MR, Santos NC, Goncalves S, Domingues MM (2018) Application of light scattering techniques to nanoparticle characterization and development. Front Chem 6:237. https://doi.org/10.3389/fchem.2018.00237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Di Cola E, Grillo I, Ristori S (2016) Small angle X-ray and neutron scattering: powerful tools for studying the structure of drug-loaded liposomes. Pharmaceutics 8(2). https://doi.org/10.3390/pharmaceutics8020010

  35. Lombardo D, Calandra P, Bellocco E, Lagana G, Barreca D, Magazu S, Wanderlingh U, Kiselev MA (2016) Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. Biochim Biophys Acta 1858(11):2769–2777. https://doi.org/10.1016/j.bbamem.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  36. Kaszuba M, Corbett J, Watson FM, Jones A (2010) High-concentration zeta potential measurements using light-scattering techniques. Philos Trans A Math Phys Eng Sci 368(1927):4439–4451. https://doi.org/10.1098/rsta.2010.0175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi L, Fleming CJ, Riechers SL, Yin NN, Luo J, Lam KS, Liu GY (2011) High-resolution imaging of dendrimers used in drug delivery via scanning probe microscopy. J Drug Deliv 2011:254095. https://doi.org/10.1155/2011/254095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Valdés Lizama O, Vilos C, Durán-Lara E (2016) Techniques of structural characterization of dendrimers. Curr Org Chem 20(24):2591–2605. https://doi.org/10.2174/1385272820666160608095009

    Article  CAS  Google Scholar 

  39. Asadi Asadabad M, Jafari Eskandari M (2014) Transmission electron microscopy as best technique for characterization in nanotechnology. Synthesis and reactivity in inorganic, metal-organic, and nano-metal. Chemistry 45(3):323–326. https://doi.org/10.1080/15533174.2013.831901

    Article  CAS  Google Scholar 

  40. Sigle W (2005) Analytical transmission electron microscopy. Annu Rev Mater Res 35(1):239–314. https://doi.org/10.1146/annurev.matsci.35.102303.091623

    Article  CAS  Google Scholar 

  41. Liang K, Gao Y, Li J, Liao Y, **ao S, Zhou X, Li J (2015) Biomimetic mineralization of collagen fibrils induced by amine-terminated PAMAM dendrimers—PAMAM dendrimers for remineralization. J Biomater Sci Polym Ed 26(14):963–974. https://doi.org/10.1080/09205063.2015.1068606

    Article  CAS  PubMed  Google Scholar 

  42. Orlova EV, Saibil HR (2011) Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 111(12):7710–7748. https://doi.org/10.1021/cr100353t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lambrecht E, Bare J, Claeys M, Chavatte N, Bert W, Sabbe K, Houf K (2015) Transmission electron microscopy sample preparation protocols for the ultrastructural study of cysts of free-living protozoa. BioTechniques 58(4):181–188. https://doi.org/10.2144/000114274

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen HB, Thai TQ, Sui Y, Azuma M, Fujiwara K, Ohno N (2018) Methodological improvements with conductive materials for volume imaging of neural circuits by electron microscopy. Front Neural Circuits 12:108. https://doi.org/10.3389/fncir.2018.00108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lombardo D, Kiselev MA, Magazù S, Calandra P (2015) Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Adv Condensed Matter Phy 2015:1–22. https://doi.org/10.1155/2015/151683

    Article  CAS  Google Scholar 

  46. Koley S, Panda MR, Bharadwaj K, Ghosh S (2018) Spectroscopic and calorimetric studies of molecular recognitions in a dendrimer-surfactant complex. Langmuir 34(3):817–825. https://doi.org/10.1021/acs.langmuir.7b01081

    Article  CAS  PubMed  Google Scholar 

  47. Nesměrák K, Němcová I (2006) Determination of critical micelle concentration by electrochemical means. Anal Lett 39(6):1023–1040. https://doi.org/10.1080/00032710600620302

    Article  CAS  Google Scholar 

  48. Tan CH, Huang ZJ, Huang XG (2010) Rapid determination of surfactant critical micelle concentration in aqueous solutions using fiber-optic refractive index sensing. Anal Biochem 401(1):144–147. https://doi.org/10.1016/j.ab.2010.02.021

    Article  CAS  PubMed  Google Scholar 

  49. Loh W, Brinatti C, Tam KC (2016) Use of isothermal titration calorimetry to study surfactant aggregation in colloidal systems. Biochim Biophys Acta 1860(5):999–1016. https://doi.org/10.1016/j.bbagen.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  50. Rodrigo AC, Bromfield SM, Laurini E, Posocco P, Pricl S, Smith DK (2017) Morphological control of self-assembled multivalent (SAMul) heparin binding in highly competitive media. Chem Commun (Camb) 53(47):6335–6338. https://doi.org/10.1039/c7cc02990j

    Article  CAS  Google Scholar 

  51. Szumilak M, Merecz A, Strek M, Stanczak A, Inglot TW, Karwowski BT (2016) DNA interaction studies of selected polyamine conjugates. Int J Mol Sci 17(9):1560. https://doi.org/10.3390/ijms17091560

    Article  CAS  PubMed Central  Google Scholar 

  52. Lee PY, Costumbrado J, Hsu CY, Kim YH (2012) Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp 62:3923. https://doi.org/10.3791/3923

    Article  CAS  Google Scholar 

  53. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951. https://doi.org/10.1038/nbt.3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ellert-Miklaszewska A, Ochocka N, Maleszewska M, Ding L, Laurini E, Jiang Y, Roura AJ, Giorgio S, Gielniewski B, Pricl S, Peng L, Kaminska B (2019) Efficient and innocuous delivery of small interfering RNA to microglia using an amphiphilic dendrimer nanovector. Nanomedicine (Lond) 14(18):2441–2458. https://doi.org/10.2217/nnm-2019-0176

    Article  CAS  Google Scholar 

  55. Velazquez-Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E (2004) Isothermal titration calorimetry. Curr Protoc Cell Biol Chapter 17:Unit 17 18. https://doi.org/10.1002/0471143030.cb1708s23

  56. Damian L (2013) Isothermal titration calorimetry for studying protein-ligand interactions. Methods Mol Biol 1008:103–118. https://doi.org/10.1007/978-1-62703-398-5_4

    Article  CAS  PubMed  Google Scholar 

  57. Velazquez-Campoy A, Leavitt SA, Freire E (2015) Characterization of protein-protein interactions by isothermal titration calorimetry. Methods Mol Biol 1278:183–204. https://doi.org/10.1007/978-1-4939-2425-7_11

    Article  CAS  PubMed  Google Scholar 

  58. Crane-Robinson C, Dragan AI, Read CM (2009) Defining the thermodynamics of protein/DNA complexes and their components using micro-calorimetry. Methods Mol Biol 543:625–651. https://doi.org/10.1007/978-1-60327-015-1_37

    Article  CAS  PubMed  Google Scholar 

  59. Jang M, Kim JH, Nam HY, Kwon IC, Ahn HJ (2015) Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription. Nat Commun 6:7930. https://doi.org/10.1038/ncomms8930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu X, Wu J, Yammine M, Zhou J, Posocco P, Viel S, Liu C, Ziarelli F, Fermeglia M, Pricl S, Victorero G, Nguyen C, Erbacher P, Behr JP, Peng L (2011) Structurally flexible triethanolamine core PAMAM dendrimers are effective nanovectors for DNA transfection in vitro and in vivo to the mouse thymus. Bioconjug Chem 22(12):2461–2473. https://doi.org/10.1021/bc200275g

    Article  CAS  PubMed  Google Scholar 

  61. Liu X, Liu C, Laurini E, Posocco P, Pricl S, Qu F, Rocchi P, Peng L (2012) Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer. Mol Pharm 9(3):470–481. https://doi.org/10.1021/mp2006104

    Article  CAS  PubMed  Google Scholar 

  62. Tatiparti K, Sau S, Kashaw SK, Iyer AK (2017) siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel) 7(4):77. https://doi.org/10.3390/nano7040077

    Article  CAS  Google Scholar 

  63. Tai W, Gao X (2017) Functional peptides for siRNA delivery. Adv Drug Deliv Rev 110–111:157–168. https://doi.org/10.1016/j.addr.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  64. Sun X, Dong S, Li X, Yu K, Sun F, Lee RJ, Li Y, Teng L (2019) Delivery of siRNA using folate receptor-targeted pH-sensitive polymeric nanoparticles for rheumatoid arthritis therapy. Nanomedicine 20:102017. https://doi.org/10.1016/j.nano.2019.102017

    Article  CAS  PubMed  Google Scholar 

  65. Liu K, Jiang X, Hunziker P (2016) Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. Nanoscale 8(36):16091–16156. https://doi.org/10.1039/c6nr04489a

    Article  CAS  PubMed  Google Scholar 

  66. Kulhari H, Jangid AK, Adams DJ (2019) Monoclonal antibody-conjugated dendritic nanostructures for siRNA delivery. Methods Mol Biol 1974:195–201. https://doi.org/10.1007/978-1-4939-9220-1_14

    Article  CAS  PubMed  Google Scholar 

  67. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A (2017) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 37(2):163–176. https://doi.org/10.3109/07388551.2015.1128876

    Article  CAS  PubMed  Google Scholar 

  68. Vranic S, Boggetto N, Contremoulins V, Mornet S, Reinhardt N, Marano F, Baeza-Squiban A, Boland S (2013) Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part Fibre Toxicol 10:2. https://doi.org/10.1186/1743-8977-10-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dong Y, Yu T, Ding L, Laurini E, Huang Y, Zhang M, Weng Y, Lin S, Chen P, Marson D, Jiang Y, Giorgio S, Pricl S, Liu X, Rocchi P, Peng L (2018) A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J Am Chem Soc 140(47):16264–16274. https://doi.org/10.1021/jacs.8b10021

    Article  CAS  PubMed  Google Scholar 

  70. Gottstein C, Wu G, Wong BJ, Zasadzinski JA (2013) Precise quantification of nanoparticle internalization. ACS Nano 7(6):4933–4945. https://doi.org/10.1021/nn400243d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nwaneshiudu A, Kuschal C, Sakamoto FH, Anderson RR, Schwarzenberger K, Young RC (2012) Introduction to confocal microscopy. J Invest Dermatol 132(12):e3. https://doi.org/10.1038/jid.2012.429

    Article  CAS  PubMed  Google Scholar 

  72. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943. https://doi.org/10.1038/nrm2531

    Article  CAS  PubMed  Google Scholar 

  73. Vercauteren D, Vandenbroucke RE, Jones AT, Rejman J, Demeester J, De Smedt SC, Sanders NN, Braeckmans K (2010) The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther 18(3):561–569. https://doi.org/10.1038/mt.2009.281

    Article  CAS  PubMed  Google Scholar 

  74. Dutta D, Donaldson JG (2012) Search for inhibitors of endocytosis: intended specificity and unintended consequences. Cell Logist 2(4):203–208. https://doi.org/10.4161/cl.23967

    Article  PubMed  PubMed Central  Google Scholar 

  75. Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127(5):1199–1215. https://doi.org/10.1083/jcb.127.5.1199

    Article  CAS  PubMed  Google Scholar 

  76. Wang LH, Rothberg KG, Anderson RG (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123(5):1107–1117. https://doi.org/10.1083/jcb.123.5.1107

    Article  CAS  PubMed  Google Scholar 

  77. Shurety W, Stewart NL, Stow JL (1998) Fluid-phase markers in the basolateral endocytic pathway accumulate in response to the actin assembly-promoting drug Jasplakinolide. Mol Biol Cell 9(4):957–975. https://doi.org/10.1091/mbc.9.4.957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kenworthy AK, Petranova N, Edidin M (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell 11(5):1645–1655. https://doi.org/10.1091/mbc.11.5.1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sager PR, Brown PA, Berlin RD (1984) Analysis of transferrin recycling in mitotic and interphase HeLa cells by quantitative fluorescence microscopy. Cell 39(2 Pt 1):275–282. https://doi.org/10.1016/0092-8674(84)90005-9

    Article  CAS  PubMed  Google Scholar 

  80. Freundt EC, Czapiga M, Lenardo MJ (2007) Photoconversion of Lysotracker Red to a green fluorescent molecule. Cell Res 17(11):956–958. https://doi.org/10.1038/cr.2007.80

    Article  CAS  PubMed  Google Scholar 

  81. Villanueva A, Canete M, Roca AG, Calero M, Veintemillas-Verdaguer S, Serna CJ, Morales Mdel P, Miranda R (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20(11):115103. https://doi.org/10.1088/0957-4484/20/11/115103

    Article  CAS  PubMed  Google Scholar 

  82. Bae Y, Song SJ, Mun JY, Ko KS, Han J, Choi JS (2017) Apoptin gene delivery by the functionalized polyamidoamine (PAMAM) dendrimer modified with ornithine induces cell death of HepG2 cells. Polymers (Basel) 9(6):197. https://doi.org/10.3390/polym9060197

    Article  CAS  Google Scholar 

  83. Lalande ME, Ling V, Miller RG (1981) Hoechst 33342 dye uptake as a probe of membrane permeability changes in mammalian cells. Proc Natl Acad Sci U S A 78(1):363–367. https://doi.org/10.1073/pnas.78.1.363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Holmes K, Williams CM, Chapman EA, Cross MJ (2010) Detection of siRNA induced mRNA silencing by RT-qPCR: considerations for experimental design. BMC Res Notes 3:53. https://doi.org/10.1186/1756-0500-3-53

  85. Li J, Wu C, Wang W, He Y, Elkayam E, Joshua-Tor L, Hammond PT (2018) Structurally modulated codelivery of siRNA and Argonaute 2 for enhanced RNA interference. Proc Natl Acad Sci U S A 115(12):E2696–E2705. https://doi.org/10.1073/pnas.1719565115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ervin EH, Pook M, Teino I, Kasuk V, Trei A, Pooga M, Maimets T (2019) Targeted gene silencing in human embryonic stem cells using cell-penetrating peptide PepFect 14. Stem Cell Res Ther 10(1):43. https://doi.org/10.1186/s13287-019-1144-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. https://horizondiscovery.com/-/media/Files/Horizon/resources/Application-notes/effective-sirna-controls-technote.pdf

  88. Li Y, Xu S, Wang X, Shi H, Sun Z, Yang Z (2013) Tumor-specific RNA interference targeting Pokemon suppresses tumor growth and induces apoptosis in prostate cancer. Urology 81(2):461–467. https://doi.org/10.1016/j.urology.2012.10.011

    Article  Google Scholar 

  89. Voll EA, Ogden IM, Pavese JM, Huang X, Xu L, Jovanovic BD, Bergan RC (2014) Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression. Oncotarget 5(9):2648–2663. https://doi.org/10.18632/oncotarget.1917

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C, Gleave M (2005) Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res 65(23):11083–11093. https://doi.org/10.1158/0008-5472.CAN-05-1840

    Article  CAS  PubMed  Google Scholar 

  91. Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L, Nelson C, Gleave M (2006) Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int 98(5):1082–1089. https://doi.org/10.1111/j.1464-410X.2006.06425.x

    Article  CAS  PubMed  Google Scholar 

  92. Raso A, Biassoni R (2014) Twenty years of qPCR: a mature technology? Methods Mol Biol 1160:1–3. https://doi.org/10.1007/978-1-4939-0733-5_1

    Article  CAS  PubMed  Google Scholar 

  93. https://www.thermofisher.com/content/dam/LifeTech/global/Forms/PDF/real-time-pcr-handbook.pdf

  94. Liang W, Mason AJ, Lam JK (2013) Western blot evaluation of siRNA delivery by pH-responsive peptides. Methods Mol Biol 986:73–87. https://doi.org/10.1007/978-1-62703-311-4_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moritz CP (2017) Tubulin or not tubulin: heading toward total protein staining as loading control in Western blots. Proteomics 17(20):189. https://doi.org/10.1002/pmic.201600189

    Article  CAS  Google Scholar 

  96. Butler TAJ, Paul JW, Chan EC, Smith R, Tolosa JM (2019) Misleading westerns: common quantification mistakes in Western blot densitometry and proposed corrective measures. Biomed Res Int 2019:5214821. https://doi.org/10.1155/2019/5214821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tolosa L, Donato MT, Gomez-Lechon MJ (2015) General cytotoxicity assessment by means of the MTT assay. Methods Mol Biol 1250:333–348. https://doi.org/10.1007/978-1-4939-2074-7_26

    Article  CAS  PubMed  Google Scholar 

  98. Kim SW, Roh J, Park CS (2016) Immunohistochemistry for pathologists: protocols, pitfalls, and tips. J Pathol Transl Med 50(6):411–418. https://doi.org/10.4132/jptm.2016.08.08

    Article  PubMed  PubMed Central  Google Scholar 

  99. Berlin A, Castro-Mesta JF, Rodriguez-Romo L, Hernandez-Barajas D, Gonzalez-Guerrero JF, Rodriguez-Fernandez IA, Gonzalez-Conchas G, Verdines-Perez A, Vera-Badillo FE (2017) Prognostic role of Ki-67 score in localized prostate cancer: a systematic review and meta-analysis. Urol Oncol 35(8):499–506. https://doi.org/10.1016/j.urolonc.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  100. Tretiakova MS, Wei W, Boyer HD, Newcomb LF, Hawley S, Auman H, Vakar-Lopez F, McKenney JK, Fazli L, Simko J, Troyer DA, Hurtado-Coll A, Thompson IM Jr, Carroll PR, Ellis WJ, Gleave ME, Nelson PS, Lin DW, True LD, Feng Z, Brooks JD (2016) Prognostic value of Ki67 in localized prostate carcinoma: a multi-institutional study of >1000 prostatectomies. Prostate Cancer Prostatic Dis 19(3):264–270. https://doi.org/10.1038/pcan.2016.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Aman NA, Doukoure B, Koffi KD, Koui BS, Traore ZC, Kouyate M, Toure I, Effi AB (2019) Immunohistochemical evaluation of Ki-67 and comparison with clinicopathologic factors in breast carcinomas. Asian Pac J Cancer Prev 20(1):73–79. https://doi.org/10.31557/APJCP.2019.20.1.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Menon SS, Guruvayoorappan C, Sakthivel KM, Rasmi RR (2019) Ki-67 protein as a tumour proliferation marker. Clin Chim Acta 491:39–45. https://doi.org/10.1016/j.cca.2019.01.011

    Article  CAS  PubMed  Google Scholar 

  103. Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6(3):139–150. https://doi.org/10.4103/0975-7406.130965

    Article  PubMed  PubMed Central  Google Scholar 

  104. Janaszewska A, Lazniewska J, Trzepinski P, Marcinkowska M, Klajnert-Maculewicz B (2019) Cytotoxicity of dendrimers. Biomolecules 9(8):330. https://doi.org/10.3390/biom9080330

    Article  CAS  PubMed Central  Google Scholar 

  105. Kumar P, Nagarajan A, Uchil PD (2018) Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb Protoc 2018(6). https://doi.org/10.1101/pdb.prot095497

  106. Zobel HP, Zimmer A, Atmaca-Abdel Aziz S, Gilbert M, Werner D, Noe CR, Kreuter J, Stieneker F (1999) Evaluation of aminoalkylmethacrylate nanoparticles as colloidal drug carrier systems. Part I: Synthesis of monomers, dependence of the physical properties on the polymerization methods. Eur J Pharm Biopharm 47(3):203–213. https://doi.org/10.1016/s0939-6411(98)00100-3

    Article  CAS  PubMed  Google Scholar 

  107. Sharma M (2019) Transdermal and intravenous nano drug delivery systems. In: Applications of targeted nano drugs and delivery systems, pp 499–550. https://doi.org/10.1016/b978-0-12-814029-1.00018-1

    Chapter  Google Scholar 

  108. Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8(8):2180–2187. https://doi.org/10.1021/nl0805615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Khalifian S, Raimondi G, Brandacher G (2015) The use of luminex assays to measure cytokines. J Invest Dermatol 135(4):1–5. https://doi.org/10.1038/jid.2015.36

    Article  CAS  PubMed  Google Scholar 

  110. Rincon M (2012) Interleukin-6: from an inflammatory marker to a target for inflammatory diseases. Trends Immunol 33(11):571–577. https://doi.org/10.1016/j.it.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  111. Zuo H, Tell GS, Vollset SE, Ueland PM, Nygard O, Midttun O, Meyer K, Ulvik A, Eussen SJ (2014) Interferon-gamma-induced inflammatory markers and the risk of cancer: the Hordaland Health Study. Cancer 120(21):3370–3377. https://doi.org/10.1002/cncr.28869

    Article  CAS  PubMed  Google Scholar 

  112. Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF (2007) The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 48(4):751–762. https://doi.org/10.1194/jlr.R600021-JLR200

    Article  CAS  PubMed  Google Scholar 

  113. Hamilton JA (2019) GM-CSF-dependent inflammatory pathways. Front Immunol 10:2055. https://doi.org/10.3389/fimmu.2019.02055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res 29(6):313–326. https://doi.org/10.1089/jir.2008.0027

    Article  CAS  Google Scholar 

  115. Son DS, Parl AK, Rice VM, Khabele D (2007) Keratinocyte chemoattractant (KC)/human growth-regulated oncogene (GRO) chemokines and pro-inflammatory chemokine networks in mouse and human ovarian epithelial cancer cells. Cancer Biol Ther 6(8):1302–1312. https://doi.org/10.4161/cbt.6.8.4506

    Article  CAS  PubMed  Google Scholar 

  116. Ren K, Torres R (2009) Role of interleukin-1beta during pain and inflammation. Brain Res Rev 60(1):57–64. https://doi.org/10.1016/j.brainresrev.2008.12.020

    Article  CAS  PubMed  Google Scholar 

  117. Liu Z, Que S, Xu J, Peng T (2014) Alanine aminotransferase-old biomarker and new concept: a review. Int J Med Sci 11(9):925–935. https://doi.org/10.7150/ijms.8951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. McGill MR (2016) The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J 15:817–828. https://doi.org/10.17179/excli2016-800

    Article  PubMed  PubMed Central  Google Scholar 

  119. Fevery J (2008) Bilirubin in clinical practice: a review. Liver Int 28(5):592–605. https://doi.org/10.1111/j.1478-3231.2008.01716.x

    Article  CAS  PubMed  Google Scholar 

  120. Vanholder R, Gryp T, Glorieux G (2018) Urea and chronic kidney disease: the comeback of the century? (in uraemia research). Nephrol Dial Transplant 33(1):4–12. https://doi.org/10.1093/ndt/gfx039

    Article  CAS  PubMed  Google Scholar 

  121. Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: an overview. Indian J Clin Biochem 29(3):269–278. https://doi.org/10.1007/s12291-013-0408-y

    Article  CAS  PubMed  Google Scholar 

  122. Bolsoni-Lopes A, Alonso-Vale MI (2015) Lipolysis and lipases in white adipose tissue - an update. Arch Endocrinol Metab 59(4):335–342. https://doi.org/10.1590/2359-3997000000067

    Article  PubMed  Google Scholar 

  123. Upadhyay RK (2015) Emerging risk biomarkers in cardiovascular diseases and disorders. J Lipids 2015:971453. https://doi.org/10.1155/2015/971453

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Laurini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Laurini, E., Aulic, S., Marson, D., Fermeglia, M., Pricl, S. (2021). Cationic Dendrimers for siRNA Delivery: An Overview of Methods for In Vitro/In Vivo Characterization. In: Ditzel, H.J., Tuttolomondo, M., Kauppinen, S. (eds) Design and Delivery of SiRNA Therapeutics. Methods in Molecular Biology, vol 2282. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1298-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1298-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1297-2

  • Online ISBN: 978-1-0716-1298-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation