Using TUNEL Assay to Quantitate p53-Induced Apoptosis in Mouse Tissues

  • Protocol
  • First Online:
Cell Cycle Checkpoints

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2267))

Abstract

Critical to tumor surveillance in eukaryotic cells is the ability to perceive and respond to DNA damage. p53, fulfills its role as “guardian of the genome” by either arresting cells in the cell cycle in order to allow time for repair of DNA damage or regulating a process of programmed cell death known as apoptosis. This process will eliminate cells that have suffered severe damage from intrinsic or extrinsic factors such as X-ray irradiation or chemotherapeutic drug treatments that include doxorubicin, etoposide, cisplatin, and methotrexate. Assays designed to specifically detect cells undergoing programmed cell death are essential in defining the tissue specific responses to tumor therapy treatment, tissue damage, or degenerative processes. This chapter will delineate the TUNEL (terminal deoxynucleotidyl transferase nick-end labeling) assay that is used for the rapid detection of 3′ OH ends of DNA that are generated during apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kern SE (1991) Identification of p53 as a sequence-specificDNA-binding protein. Science 252(5013):1708–1711

    Article  CAS  Google Scholar 

  2. Pietenpol JA, Tokino T, Thiagalingam S, El-Deiry WS, Kinzler KW, Vogelstein B (1994) Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci U S A 91:1998–2002

    Article  CAS  Google Scholar 

  3. Burns TF, El-Deiry WS (1999) The p53 pathway and apoptosis. J Cell Physiol 181(2):231–239

    Article  CAS  Google Scholar 

  4. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825

    Article  CAS  Google Scholar 

  5. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75(4):805–816

    Article  CAS  Google Scholar 

  6. Kastan MB, Zhan Q, El-Deiry W, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  CAS  Google Scholar 

  7. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B (1999) 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401(6753):616–620

    Article  CAS  Google Scholar 

  8. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7(3):683–694

    Article  CAS  Google Scholar 

  9. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7(3):673–682

    Article  CAS  Google Scholar 

  10. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  CAS  Google Scholar 

  11. Agarwal ML, Agarwal A, Taylor WR, Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A 92(18):8493–8497

    Article  CAS  Google Scholar 

  12. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2(8):594–604

    Article  CAS  Google Scholar 

  13. Shikama N, Lee CW, France S, Delavaine L, Lyon J, Krstic-Demonacos M, La Thangue NB (1999) A novel cofactor for p300 that regulates the p53 response. Mol Cell 4(3):365–376

    Article  CAS  Google Scholar 

  14. Samuels-Lev Y, O’Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S, Campargue I, Naumovski L, Crook T, Lu X (2001) ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8(4):781–794

    Article  CAS  Google Scholar 

  15. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416(6880):560–564

    Article  CAS  Google Scholar 

  16. Liu Y, Tavana O, Gu W (2019) p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol 11(7):564–577. https://doi.org/10.1093/jmcb/mjz060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Waldman T, Kinzler KW, Vogelstein B (1995) p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55(22):5187–5190

    CAS  PubMed  Google Scholar 

  18. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282(5393):1497–1501

    Article  CAS  Google Scholar 

  19. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82(4):675–684

    Article  CAS  Google Scholar 

  20. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144(5):891–901. https://doi.org/10.1083/jcb.144.5.891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L (2003) PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A 100(4):1931–1936

    Article  CAS  Google Scholar 

  22. Yee KS, Vousden KH (2008) Contribution of membrane localization to the apoptotic activity of PUMA. Apoptosis 13(1):87–95. https://doi.org/10.1007/s10495-007-0140-2

    Article  PubMed  Google Scholar 

  23. Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, MacLean KH, Han J, Chittenden T, Ihle JN, McKinnon PJ, Cleveland JL, Zambetti GP (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4(4):321–328

    Article  CAS  Google Scholar 

  24. Wang P, Yu J, Zhang L (2007) The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc Natl Acad Sci U S A 104(10):4054–4059. https://doi.org/10.1073/pnas.0700020104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Facchinetti A, Tessarollo L, Mazzocchi M, Kingston R, Collavo D, Biasi G (1991) An improved method for the detection of DNA fragmentation. J Immunol Methods 136(1):125–131. https://doi.org/10.1016/0022-1759(91)90258-h

    Article  CAS  PubMed  Google Scholar 

  26. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3):249–261. https://doi.org/10.1385/MB:26:3:249

    Article  CAS  PubMed  Google Scholar 

  27. Gorczyca W, Bruno S, Darzynkiewicz R, Gong J, Darzynkiewicz Z (1992) DNA strand breaks occurring during apoptosis - their early insitu detection by the terminal deoxynucleotidyl transferase and nick translation assays and prevention by serine protease inhibitors. Int J Oncol 1(6):639–648. https://doi.org/10.3892/ijo.1.6.639

    Article  CAS  PubMed  Google Scholar 

  28. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501. https://doi.org/10.1083/jcb.119.3.493

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Nicolas Barthelery for his guidance in animal care and related procedures, as well as the use of the cryostat and sectioning instructions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lois Resnick-Silverman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Resnick-Silverman, L. (2021). Using TUNEL Assay to Quantitate p53-Induced Apoptosis in Mouse Tissues. In: Manfredi, J.J. (eds) Cell Cycle Checkpoints. Methods in Molecular Biology, vol 2267. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1217-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1217-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1216-3

  • Online ISBN: 978-1-0716-1217-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation