In Vivo Administration of Therapeutic Antisense Oligonucleotides

  • Protocol
Functional Analysis of Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2254))

Abstract

With the rapid revolution in RNA/DNA sequencing technologies, it is evident that mammalian genomes express tens of thousands of long noncoding RNAs (lncRNAs). Since a large majority of lncRNAs have been functionally implicated in cancer development and progression, there is an increasing appreciation for the use of antisense oligonucleotide (ASO)-based therapies targeting lncRNAs in several cancers. Despite their great potential in therapeutic applications, their use is still limited due to cellular toxicity and shortcomings in achieving required stability in biological fluids and tissue uptake. To overcome these limitations, major changes in ASO chemistry have been introduced to generate second and third generation ASOs, including locked nucleic acids (LNA) technology. Here we describe two different LNA-ASO delivery approaches, a peritumoral administration and a systemic delivery in xenograft models of lung adenocarcinoma, that significantly reduced tumor growth without inducing toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dias N, Stein CA (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1:347–355

    CAS  PubMed  Google Scholar 

  2. Schoch KM, Miller TM (2017) Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94:1056–1070

    Article  CAS  Google Scholar 

  3. Crooke ST (2017) Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther 27:70–77

    Article  CAS  Google Scholar 

  4. Havens MA, Hastings ML (2016) Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 44:6549–6563

    Article  Google Scholar 

  5. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12:847–865

    Article  CAS  Google Scholar 

  6. Liang XH, Sun H, Nichols JG et al (2017) RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus. Mol Ther 25:2075–2092

    Article  CAS  Google Scholar 

  7. Erickson MA, Niehoff ML, Farr SA et al (2012) Peripheral administration of antisense oligonucleotides targeting the amyloid-beta protein precursor reverses AbetaPP and LRP-1 overexpression in the aged SAMP8 mouse brain. J Alzheimers Dis 28:951–960

    Article  CAS  Google Scholar 

  8. Viereck J, Kumarswamy R, Foinquinos A et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:326ra322

    Article  Google Scholar 

  9. Bremmer-Bout M, Aartsma-Rus A, De Meijer EJ et al (2004) Targeted exon skip** in transgenic hDMD mice: a model for direct preclinical screening of human-specific antisense oligonucleotides. Mol Ther 10:232–240

    Article  CAS  Google Scholar 

  10. Cao C, Mu Y, Hallahan DE et al (2004) XIAP and survivin as therapeutic targets for radiation sensitization in preclinical models of lung cancer. Oncogene 23:7047–7052

    Article  CAS  Google Scholar 

  11. Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther 25:1069–1075

    Article  CAS  Google Scholar 

  12. Rinaldi C, Wood MJA (2018) Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 14:9–21

    Article  CAS  Google Scholar 

  13. Reilley MJ, Mccoon P, Cook C et al (2018) STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial. J Immunother Cancer 6:119

    Article  Google Scholar 

  14. Kamola PJ, Kitson JD, Turner G et al (2015) In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization. Nucleic Acids Res 43:8638–8650

    Article  CAS  Google Scholar 

  15. Agrawal S, Kandimalla ER (2004) Role of toll-like receptors in antisense and siRNA [corrected]. Nat Biotechnol 22:1533–1537

    Article  CAS  Google Scholar 

  16. Yoshida T, Naito Y, Sasaki K et al (2018) Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences. Genes Cells 23:448–455

    Article  CAS  Google Scholar 

  17. Ali MM, Akhade VS, Kosalai ST et al (2018) PAN-cancer analysis of S-phase enriched lncRNAs identifies oncogenic drivers and biomarkers. Nat Commun 9:883

    Article  Google Scholar 

  18. Leucci E, Vendramin R, Spinazzi M et al (2016) Melanoma addiction to the long non-coding RNA SAMMSON. Nature 531:518–522

    Article  CAS  Google Scholar 

  19. Michalik KM, You X, Manavski Y et al (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114:1389–1397

    Article  CAS  Google Scholar 

  20. Straarup EM, Fisker N, Hedtjarn M et al (2010) Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Res 38:7100–7111

    Article  CAS  Google Scholar 

  21. Starckx S, Batheja A, Verheyen GR et al (2013) Evaluation of miR-122 and other biomarkers in distinct acute liver injury in rats. Toxicol Pathol 41:795–804

    Article  CAS  Google Scholar 

  22. Sharapova T, Devanarayan V, Leroy B et al (2016) Evaluation of miR-122 as a serum biomarker for hepatotoxicity in investigative rat toxicology studies. Vet Pathol 53:211–221

    Article  CAS  Google Scholar 

  23. Burel SA, Han SR, Lee HS et al (2013) Preclinical evaluation of the toxicological effects of a novel constrained ethyl modified antisense compound targeting signal transducer and activator of transcription 3 in mice and cynomolgus monkeys. Nucleic Acid Ther 23:213–227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from Knut and Alice Wallenberg Foundation [KAW2014.0057], Swedish Foundation for Strategic Research [RB13-0204], Swedish Cancer Research foundation [Cancerfonden: Kontrakt no. CAN2018/591], Swedish Research Council [2017-02834], Barncancerfonden [PR2018-0090], Ingabritt Och Arne Lundbergs forskningsstiftelse, and LUA/ALF (to C.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekhar Kanduri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Statello, L., Ali, M.M., Kanduri, C. (2021). In Vivo Administration of Therapeutic Antisense Oligonucleotides. In: Cao, H. (eds) Functional Analysis of Long Non-Coding RNAs. Methods in Molecular Biology, vol 2254. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1158-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1158-6_17

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1157-9

  • Online ISBN: 978-1-0716-1158-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation