Rodent Models of Congenital Cytomegalovirus Infection

  • Protocol
  • First Online:
Human Cytomegaloviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2244))

Abstract

Human cytomegalovirus (HCMV) is a leading viral cause of congenital infections in the central nervous system (CNS) and may result in severe long-term sequelae. High rates of sequelae following congenital HCMV infection and insufficient antiviral therapy in the perinatal period makes the development of an HCMV-specific vaccine a high priority of modern medicine. Due to the species specificity of HCMV, animal models are frequently used to study CMV pathogenesis. Studies of murine cytomegalovirus (MCMV) infections of adult mice have played a significant role as a model of CMV biology and pathogenesis, while MCMV infection of newborn mice has been successfully used as a model of perinatal CMV infection. Newborn mice infected with MCMV have high levels of viremia during which the virus establishes a productive infection in most organs, coupled with a robust inflammatory response. Productive infection in the brain parenchyma during early postnatal period leads to an extensive nonnecrotizing multifocal widespread encephalitis characterized by infiltration of components of both innate and adaptive immunity. As a result, impairment in postnatal development of mouse cerebellum leads to long-term motor and sensor disabilities. This chapter summarizes current findings of rodent models of perinatal CMV infection and describes methods for analysis of perinatal MCMV infection in newborn mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zuhair M et al (2019) Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev Med Virol 29(3):e2034

    Article  PubMed  Google Scholar 

  2. Tastad KJ et al (2019) Awareness of congenital cytomegalovirus and acceptance of maternal and newborn screening. PLoS One 14(8):e0221725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jeon J et al (2006) Knowledge and awareness of congenital cytomegalovirus among women. Infect Dis Obstet Gynecol 2006:80383

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gerna G, Kabanova A, Lilleri D (2019) Human cytomegalovirus cell tropism and host cell receptors. Vaccines (Basel) 7(3)

    Google Scholar 

  5. Sinzger C, Digel M, Jahn G (2008) Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 325:63–83

    CAS  PubMed  Google Scholar 

  6. Britt W (2007) Virus entry into host, establishment of infection, spread in host, mechanisms of tissue damage. In: Arvin A et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press Copyright (c) Cambridge University Press 2007, Cambridge

    Google Scholar 

  7. Britt W (2011) Chapter 23—Cytomegalovirus. In: Remington JS et al (eds) Infectious Diseases of the Fetus and Newborn (Seventh Edition). W.B. Saunders, Philadelphia, pp 706–755

    Chapter  Google Scholar 

  8. Cannon MJ (2009) Congenital cytomegalovirus (CMV) epidemiology and awareness. J Clin Virol 46(Suppl 4):S6–S10

    Article  PubMed  Google Scholar 

  9. Davis NL, King CC, Kourtis AP (2017) Cytomegalovirus infection in pregnancy. Birth Defects Res 109(5):336–346

    Article  CAS  PubMed  Google Scholar 

  10. Wu CA et al (2011) Transmission of murine cytomegalovirus in breast milk: a model of natural infection in neonates. J Virol 85(10):5115–5124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manicklal S et al (2013) The "silent" global burden of congenital cytomegalovirus. Clin Microbiol Rev 26(1):86–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dietrich ML, Schieffelin JS (2019) Congenital cytomegalovirus infection. Ochsner J 19(2):123–130

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pass RF (2002) Cytomegalovirus infection. Pediatr Rev 23(5):163–170

    Article  PubMed  Google Scholar 

  14. Morton CC, Nance WE (2006) Newborn hearing screening--a silent revolution. N Engl J Med 354(20):2151–2164

    Article  CAS  PubMed  Google Scholar 

  15. Cheeran MC, Lokensgard JR, Schleiss MR, Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention (2009) Clin Microbiol Rev 22(1):99–126, Table of Contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Griffith BP, Lucia HL, Hsiung GD (1982) Brain and visceral involvement during congenital cytomegalovirus infection of Guinea pigs. Pediatr Res 16(6):455–459

    Article  CAS  PubMed  Google Scholar 

  17. Keithley EM, Woolf NK, Harris JP (1989) Development of morphological and physiological changes in the cochlea induced by cytomegalovirus. Laryngoscope 99(4):409–414

    Article  CAS  PubMed  Google Scholar 

  18. Streblow DN et al (2008) Mechanisms of cytomegalovirus-accelerated vascular disease: induction of paracrine factors that promote angiogenesis and wound healing. Curr Top Microbiol Immunol 325:397–415

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Priscott PK, Tyrrell DA (1982) The isolation and partial characterisation of a cytomegalovirus from the brown rat, Rattus norvegicus. Arch Virol 73(2):145–160

    Article  CAS  PubMed  Google Scholar 

  20. Loh HS et al (2003) Characterization of a novel rat cytomegalovirus (RCMV) infecting placenta-uterus of Rattus rattus diardii. Arch Virol 148(12):2353–2367

    Article  CAS  PubMed  Google Scholar 

  21. Loh HS et al (2006) Pathogenesis and vertical transmission of a transplacental rat cytomegalovirus. Virol J 3:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Cloarec R et al (2016) Cytomegalovirus infection of the rat develo** brain in utero prominently targets immune cells and promotes early microglial activation. PLoS One 11(7):e0160176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li L et al (2008) Induction of cytomegalovirus-infected labyrinthitis in newborn mice by lipopolysaccharide: a model for hearing loss in congenital CMV infection. Lab Investig 88(7):722–730

    Article  CAS  PubMed  Google Scholar 

  24. Ishiwata M et al (2006) Differential expression of the immediate-early 2 and 3 proteins in develo** mouse brains infected with murine cytomegalovirus. Arch Virol 151(11):2181–2196

    Article  CAS  PubMed  Google Scholar 

  25. Tsutsui Y (2009) Effects of cytomegalovirus infection on embryogenesis and brain development. Congenit Anom (Kyoto) 49(2):47–55

    Article  CAS  Google Scholar 

  26. Koontz T et al (2008) Altered development of the brain after focal herpesvirus infection of the central nervous system. J Exp Med 205(2):423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kosugi I et al (2002) Innate immune responses to cytomegalovirus infection in the develo** mouse brain and their evasion by virus-infected neurons. Am J Pathol 161(3):919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Den Pol AN et al (1999) Cytomegalovirus cell tropism, replication, and gene transfer in brain. J Neurosci 19(24):10948–10965

    Article  PubMed Central  Google Scholar 

  29. Stagno S, Britt WJ (2006) Cytomegalovirus. In: Remington JS, Klein JO (eds) Diseases of the fetus and newborn infant. Saunders, W.B, Philadelphia, PA

    Google Scholar 

  30. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105(1):7–17

    Article  CAS  PubMed  Google Scholar 

  31. Reddehase MJ, Lemmermann NAW (2018) Mouse model of cytomegalovirus disease and immunotherapy in the immunocompromised host: predictions for medical translation that survived the "Test of Time". Viruses 10(12):693

    Article  CAS  PubMed Central  Google Scholar 

  32. de Vries LS et al (2004) The spectrum of cranial ultrasound and magnetic resonance imaging abnormalities in congenital cytomegalovirus infection. Neuropediatrics 35(2):113–119

    Article  PubMed  Google Scholar 

  33. Bradford RD et al (2015) Murine CMV-induced hearing loss is associated with inner ear inflammation and loss of spiral ganglia neurons. PLoS Pathog 11(4):e1004774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Carraro M et al (2017) Cytomegalovirus (CMV) infection causes degeneration of Cochlear vasculature and hearing loss in a mouse model. J Assoc Res Otolaryngol 18(2):263–273

    Article  PubMed  Google Scholar 

  35. Zhuang W et al (2018) MCMV triggers ROS/NLRP3-associated inflammasome activation in the inner ear of mice and cultured spiral ganglion neurons, contributing to sensorineural hearing loss. Int J Mol Med 41(6):3448–3456

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kosmac K et al (2013) Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development. PLoS Pathog 9(3):e1003200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seleme MC et al (2017) Tumor necrosis factor alpha-induced recruitment of inflammatory mononuclear cells leads to inflammation and altered brain development in murine cytomegalovirus-infected newborn mice. J Virol 91:e01983–e16(8)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trgovcich J et al (1998) In: Scholz M et al (eds) Pathogenesis of murine cytomegalovirus infection in neonatal mice. CMV-related immunopathology Monographs in Virology. Karger, Basel, Switzerland, p 12

    Google Scholar 

  39. Slavuljica I et al (2010) Recombinant mouse cytomegalovirus expressing a ligand for the NKG2D receptor is attenuated and has improved vaccine properties. J Clin Invest 120(12):4532–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hirsl L et al (2018) Murine CMV expressing the high affinity NKG2D ligand MULT-1: a model for the development of cytomegalovirus-based vaccines. Front Immunol 9:991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Almishaal AA et al (2017) Natural killer cells attenuate cytomegalovirus-induced hearing loss in mice. PLoS Pathog 13(8):e1006599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zeleznjak J et al (2017) Mouse cytomegalovirus encoded immunoevasins and evolution of Ly49 receptors—sidekicks or enemies? Immunol Lett 189:40–47

    Article  CAS  PubMed  Google Scholar 

  43. Bantug GR et al (2008) CD8+ T lymphocytes control murine cytomegalovirus replication in the central nervous system of newborn animals. J Immunol 181(3):2111–2123

    Article  CAS  PubMed  Google Scholar 

  44. Brizic I et al (2018) Brain-resident memory CD8(+) T cells induced by congenital CMV infection prevent brain pathology and virus reactivation. Eur J Immunol 48(6):950–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brizic I et al (2019) CD4 T cells are required for maintenance of CD8 TRM cells and virus control in the brain of MCMV-infected newborn mice. Med Microbiol Immunol 208(3-4):487–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jonjic S et al (1994) Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J Exp Med 179(5):1713–1717

    Article  CAS  PubMed  Google Scholar 

  47. Polic B et al (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188(6):1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fowler KB et al (1992) The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 326(10):663–667

    Article  CAS  PubMed  Google Scholar 

  49. Adler SP et al (1995) Immunity induced by primary human cytomegalovirus infection protects against secondary infection among women of childbearing age. J Infect Dis 171(1):26–32

    Article  CAS  PubMed  Google Scholar 

  50. Ross SA et al (2011) Mixed infection and strain diversity in congenital cytomegalovirus infection. J Infect Dis 204(7):1003–1007

    Article  PubMed  PubMed Central  Google Scholar 

  51. Boppana SB et al (2001) Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med 344(18):1366–1371

    Article  CAS  PubMed  Google Scholar 

  52. Cekinovic D et al (2008) Passive immunization reduces murine cytomegalovirus-induced brain pathology in newborn mice. J Virol 82(24):12172–12180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roncador G et al (2016) The European antibody network’s practical guide to finding and validating suitable antibodies for research. MAbs 8(1):27–36

    Article  CAS  PubMed  Google Scholar 

  54. Becroft DM (1981) Prenatal cytomegalovirus infection: epidemiology, pathology and pathogenesis. Perspect Pediatr Pathol 6:203–241

    CAS  PubMed  Google Scholar 

  55. Osborn JE, Walker DL (1971) Virulence and attenuation of murine cytomegalovirus. Infect Immun 3(2):228–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chong KT, Gould JJ, Mims CA (1981) Neutralization of different strains of murine cytomegalovirus (MCMV)-effect of in vitro passage. Arch Virol 69(2):95–104

    Article  CAS  PubMed  Google Scholar 

  57. Brizić I et al (2018) Cytomegalovirus infection: mouse model. Curr Protoc Immunol:e51

    Google Scholar 

  58. Le-Trilling VT, Trilling M (2017) Mouse newborn cells allow highly productive mouse cytomegalovirus replication, constituting a novel convenient primary cell culture system. PLoS One 12(3):e0174695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Tan CS, Frederico B, Stevenson PG (2014) Herpesvirus delivery to the murine respiratory tract. J Virol Methods 206:105–114

    Article  CAS  PubMed  Google Scholar 

  60. Hsu KM et al (2009) Murine cytomegalovirus displays selective infection of cells within hours after systemic administration. J Gen Virol 90(Pt 1):33–43

    Article  CAS  PubMed  Google Scholar 

  61. Slavuljica I et al (2015) Immunobiology of congenital cytomegalovirus infection of the central nervous system-the murine cytomegalovirus model. Cell Mol Immunol 12(2):180–191

    Article  CAS  PubMed  Google Scholar 

  62. Kurz S et al (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71(4):2980–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Weiland F et al (1986) Studies on the morphogenesis of murine cytomegalovirus. Intervirology 26(4):192–201

    Article  CAS  PubMed  Google Scholar 

  64. Lemmermann NAW et al (2010) CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. Method Microbiol 37:369–420

    Article  CAS  Google Scholar 

  65. Suvarna KS, Layton C, Bancroft JD (2018) Bancroft’s Theory and Practice of Histological Techniques. Elsevier, Amsterdam

    Google Scholar 

  66. Ross DD et al (1989) Estimation of cell survival by flow cytometric quantification of fluorescein diacetate/propidium iodide viable cell number. Cancer Res 49(14):3776–3782

    CAS  PubMed  Google Scholar 

  67. Perfetto SP et al (2006) Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J Immunol Methods 313(1-2):199–208

    Article  CAS  PubMed  Google Scholar 

  68. Perfetto SP et al (2010) Amine-reactive dyes for dead cell discrimination in fixed samples. Curr Protoc Cytom. Chapter 9: p. Unitas 9 34

    Google Scholar 

  69. Thale R et al (1994) Identification and expression of a murine cytomegalovirus early gene coding for an fc receptor. J Virol 68(12):7757–7765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Croatian Science Foundation under the project IP-2016-06-5980 (VJL), University of Rijeka under the project uniri-biomed-18-234 (BL) and the grant KK.01.1.1.01.0006, awarded to the Scientific Centre of Excellence for Virus Immunology and Vaccines and cofinanced by the European Regional Development Fund (SJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stipan Jonjić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lisnić, B., Tomac, J., Cekinović, D., Jonjić, S., Juranić Lisnić, V. (2021). Rodent Models of Congenital Cytomegalovirus Infection. In: Yurochko, A.D. (eds) Human Cytomegaloviruses. Methods in Molecular Biology, vol 2244. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1111-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1111-1_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1110-4

  • Online ISBN: 978-1-0716-1111-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation