PacBio Long-Read Sequencing, Assembly, and Funannotate Reannotation of the Complete Genome of Trichoderma reesei QM6a

  • Protocol
  • First Online:
Trichoderma reesei

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2234))

Abstract

Single-molecule real-time (SMRT) sequencing developed by Pacific BioSciences (PacBio) offers three major advantages compared to second-generation sequencing: long read length and high consensus accuracy, and a low degree of bias. Together with high sequencing coverage, these advantages overcome the difficulty of sequencing genomic regions such as long AT-rich islands and repeated regions (e.g., ribosomal DNA) in the genome of Trichoderma reesei QM6a. Herein, we describe a protocol for preparing high-quality, high molecular weight genomic DNA for PacBio long-read sequencing, de novo assembly and streamlined annotation of the QM6a genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li WC, Huang CH, Chen CL, Chuang YC, Tung SY, Wang TF (2017) Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnol Biofuels 10:170. https://doi.org/10.1186/s13068-017-0825-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li WC, Chuang YC, Chen CL, Timofejeva L, Pong WL, Chen YJ, Wang CL, Wang TF (2019) Two different pathways for initiation of Trichoderma reesei Rad51-only meiotic recombination. 2019/05/21 edn., BioRxiv. https://doi.org/10.1101/644443

  3. Selker EU, Garrett PW (1988) DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proc Natl Acad Sci U S A 85(18):6870–6874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cambareri EB, Singer MJ, Selker EU (1991) Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics 127(4):699–710

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Aramayo R, Selker EU (2013) Neurospora crassa, a model system for epigenetics research. Cold Spring Harb Perspect Biol 5(10):a017921. https://doi.org/10.1101/cshperspect.a017921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, **e G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560. https://doi.org/10.1038/nbt1403

    Article  CAS  PubMed  Google Scholar 

  7. Koike H, Aerts A, LaButti K, Grigoriev IV, Baker SE (2013) Comparative genomics analysis of Trichoderma reesei strains. Ind Biotechnol 9(6):352–367. https://doi.org/10.1089/ind.2013.0015

    Article  CAS  Google Scholar 

  8. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Dohren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gomez-Rodriguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernandez-Onate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lubeck M, Lubeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12(4):R40. https://doi.org/10.1186/gb-2011-12-4-r40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marie-Nelly H, Marbouty M, Cournac A, Flot JF, Liti G, Parodi DP, Syan S, Guillen N, Margeot A, Zimmer C, Koszul R (2014) High-quality genome (re)assembly using chromosomal contact data. Nat Commun 5:5695. https://doi.org/10.1038/ncomms6695

    Article  CAS  PubMed  Google Scholar 

  10. Jourdier E, Baudry L, Poggi-Parodi D, Vicq Y, Koszul R, Margeot A, Marbouty M, Bidard F (2017) Proximity ligation scaffolding and comparison of two Trichoderma reesei strains genomes. Biotechnol Biofuels 10:151. https://doi.org/10.1186/s13068-017-0837-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang XJ, Buck D, Au KF (2017) Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Res 6:100. https://doi.org/10.12688/f1000research.10571.2

    Article  PubMed  PubMed Central  Google Scholar 

  12. Palmer J (2017) Funannotate: Fungal genome annotation scripts. https://github.com/nextgenusfs/funannotate

  13. Seidl V, Seibel C, Kubicek CP, Schmoll M (2009) Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci U S A 106(33):13909–13914. https://doi.org/10.1073/pnas.0904936106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen CL, Kuo HC, Tung SY, Hsu PW, Wang CL, Seibel C, Schmoll M, Chen RS, Wang TF (2012) Blue light acts as a double-edged sword in regulating sexual development of Hypocrea jecorina (Trichoderma reesei). PLoS One 7(9):e44969. https://doi.org/10.1371/journal.pone.0044969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li W-C, Chuang Y-C, Chen C-L, Wang T-F (2016) Hybrid infertility: the dilemma or opportunity of applying sexual development to improve Trichoderma reesei industrial strains. In: Schmoll M, Dattenböck C (eds) Gene expression systems in fungi: advancements and applications. Springer International Publishing, Cham, pp 351–359. https://doi.org/10.1007/978-3-319-27951-0_16

    Chapter  Google Scholar 

  16. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212. https://doi.org/10.1093/bioinformatics/btv351

    Article  CAS  PubMed  Google Scholar 

  17. Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simao FA, Zdobnov EM (2019) OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res 47(D1):D807–D811. https://doi.org/10.1093/nar/gky1053

    Article  CAS  PubMed  Google Scholar 

  18. Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M (2005) Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 33(20):6494–6506. https://doi.org/10.1093/nar/gki937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33(Web Server issue):W465–W467. https://doi.org/10.1093/nar/gki458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34(Web Server issue):W435–W439. https://doi.org/10.1093/nar/gkl200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Shu-Yun Tung (IMB Genomic Core) for NGS sequencing service, John O′Brien for English editing, and Yu-Tang Huang (IMB Computer Room) for maintaining the computer workstation. We are grateful to Roland Martzy for his efforts in editing this book chapter. Funding from Academia Sinica, Taiwan, Republic of China [AS-105-TP-B07 and AS108-TP-B07] to TFW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Fang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, WC., Wang, TF. (2021). PacBio Long-Read Sequencing, Assembly, and Funannotate Reannotation of the Complete Genome of Trichoderma reesei QM6a. In: Mach-Aigner, A.R., Martzy, R. (eds) Trichoderma reesei. Methods in Molecular Biology, vol 2234. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1048-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1048-0_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1047-3

  • Online ISBN: 978-1-0716-1048-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation