Molecular Cytogenetics (Fluorescence In Situ Hybridization - FISH and Fluorochrome Banding): Resolving Species Relationships and Genome Organization

  • Protocol
  • First Online:
Molecular Plant Taxonomy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2222))

Abstract

Fluorochrome banding (chromomycin, Hoechst, and DAPI) and fluorescence in situ hybridization (FISH) are excellent molecular cytogenetic tools providing various possibilities in the study of chromosomal evolution and genome organization. The constitutive heterochromatin and rRNA genes are the most widely used FISH markers. The rDNA is organized into two distinct gene families (18S–5.8S–26S and 5S) whose number and location vary within the complex of closely related species. Therefore, they are widely used as chromosomal landmarks to provide valuable evidence concerning genome evolution at chromosomal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murata M, Heslop-Harrison JS, Motoyoushi F (1997) Physical map** of the 5S ribosomal RNA genes in Arabidopsis thaliana by multicolor fluorescence in situ hybridization with cosmid clones. Plant J 12(1):31–37

    Article  CAS  Google Scholar 

  2. Cerbah M, Kevei Z, Siljak-Yakovlev S et al (1999) FISH chromosome map** allowing karyotype analysis in Medicago truncatula lines Jemalong J5 and R 108-1. Mol Plant Microbe 12:947–950

    Article  CAS  Google Scholar 

  3. Siljak-Yakovlev S, Cerbah M, Couland J et al (2002) Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor Appl Genet 104:505–512

    Article  CAS  Google Scholar 

  4. Zhao Y, **e J, Dou Q et al (2017) Diversification of the P genome among Agropyron Gaertn. (Poaceae) species detected by FISH. Comp Cytogenet 11(3):495–509

    Article  Google Scholar 

  5. Rey MD, Moore G, Martín C (2018) Identification and comparison of individual chromosomes of three accessions of Hordeum chilense, Hordeum vulgare, and Triticum aestivum by FISH. Genome 61(6):387–396

    Article  CAS  Google Scholar 

  6. Cerbah M, Coulaud J, Siljak-Yakovlev S (1998) rDNA organization and evolutionary relationships in the genus Hypochaeris (Asteraceae). J Hered 89:312–318

    Article  CAS  Google Scholar 

  7. Weiss-Schneeweiss H, Tremetsberger K, Schneeweiss GM et al (2008) Karyotype diversification and evolution in diploid and polyploid south American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann Bot 101:909–918

    Article  CAS  Google Scholar 

  8. Zoldos V, Papes D, Cerbah M et al (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among eleven Quercus species. Theor Appl Genet 99:969–977

    Article  CAS  Google Scholar 

  9. Muratovic E, Robin O, Bogunic F et al (2010) Speciation of European lilies from Liriotypus section based on karyotype evolution. Taxon 59:165–175

    Article  Google Scholar 

  10. Lim KY, Matyásek R, Lichtenstein CP et al (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258

    Article  CAS  Google Scholar 

  11. Bogunic F, Siljak-Yakovlev S, Muratovic E et al (2011) Different karyotype patterns among allopatric Pinus nigra (Pinaceae) populations revealed by molecular cytogenetics. Plant Biol 13:194–200

    Article  CAS  Google Scholar 

  12. Bogunic F, Siljak-Yakovlev S, Muratovic E et al (2011) Molecular cytogenetics and flow cytometry reveal conserved genome organization in Pinus mugo and P. uncinata. Ann For Sci 68(1):179–187

    Article  Google Scholar 

  13. Vallès J, Garnatje T, Robin O et al (2015) Molecular cytogenetic studies in western Mediterranean Juniperus (Cupressaceae): a constant model of GC-rich chromosomal regions and rDNA loci with evidences for paleopolyploidy. Tree Genet Genomes 11(3):43. https://doi.org/10.1007/s11295-015-0860-3

    Article  Google Scholar 

  14. Siljak-Yakovlev S, Godelle B, Zoldos V et al (2017) Evolutionary implications of heterochromatin and rDNA in chromosome number and genome size changes during dysploidy: a case study in Reichardia genus. PLoS One 12(8):e0182318

    Article  Google Scholar 

  15. Hidalgo O, Vitales D, Vallès J et al (2017) Cytogenetic insights into an oceanic island radiation: the dramatic evolution of pre-existing traits in Cheirolophus (Asteraceae: Cardueae: Centaureinae). Taxon 66(1):146–157

    Article  Google Scholar 

  16. Hizume M, Aria M, Tanaka A (1990) Chromosome banding in the genus Pinus. III. Fluorescent banding pattern of P. luchuensis and its relationships among the Japanese diploxylon pines. Bot Mag Tokyo 103:103–111

    Article  Google Scholar 

  17. Bogunic F, Muratovic E, Siljak-Yakovlev S (2006) Chromosomal differentiation of Pinus heldreichii and Pinus nigra. Ann For Sci 63:267–274

    Article  Google Scholar 

  18. Godelle B, Cartier D, Marie D et al (1993) Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14:618–626

    Article  CAS  Google Scholar 

  19. Sell PD (1976) Crepis. In: Tutin TG et al (eds) Flora Europaea 4. Cambridge University Press, Cambridge, pp 344–357

    Google Scholar 

  20. Siljak-Yakovlev S, Cartier D (1986) Heterochromatin patterns in some taxa of Crepis praemorsa complex. Caryologia 39:27–32

    Article  Google Scholar 

  21. Cartier D, Siljak-Yakovlev S (1992) Cytogenetics study of the F1 hybrids between Crepis dinarica and Crepis froelichiana. Plant Syst Evol 182:29–34

    Article  Google Scholar 

  22. Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization, 2nd edn. BIOS, Oxford, UK

    Google Scholar 

  23. Schubert I, Wobus U (1985) In situ hybridization confirms jum** nucleolus organizing regions in Allium. Chromosoma 92:143–148

    Article  Google Scholar 

  24. Raina SN, Mukai Y (1999) Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59

    Article  CAS  Google Scholar 

  25. Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci U S A 101:14818–14823

    Article  CAS  Google Scholar 

  26. Datson PM, Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosom Res 14:845–857

    Article  CAS  Google Scholar 

  27. Rosato M, Moreno-Saiz CJ, Galián AJ et al (2015) Evolutionary site-number changes of ribosomal DNA loci during speciation: complex scenarios of ancestral and more recent polyploid events. AoB Plants 7:plv135. https://doi.org/10.1093/aobpla/plv135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garcia S, Garnatje T, Kovařík A (2012) Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121(4):389–394. https://doi.org/10.1007/s00412-012-0368-7

    Article  CAS  PubMed  Google Scholar 

  29. Garcia S, Gálvez F, Gras A et al (2014) Plant rDNA database: update and new features. Database (Oxford) 2014:bau063. https://doi.org/10.1093/database/bau063

    Article  CAS  Google Scholar 

  30. Garcia S, Kovařík A, Leitch AR et al (2017) Cytogenetic features of rRNA genes across land plants: analysis of the plant rDNA database. Plant J 89(5):1020–1030

    Article  CAS  Google Scholar 

  31. Waminal NE, Pellerin RJ, Kim N-S et al (2018) Rapid and efficient FISH using pre-labeled oligomer probes. Sci Rep 8:8224. https://doi.org/10.1038/s41598-018-26667-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gerlach WI, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865

    Article  CAS  Google Scholar 

  33. Torres-Ruiz RA, Hemleben V (1994) Pattern and degree of methylation in ribosomal genes of Cucurbita pepo L. Plant Mol Biol 26:1167–1179

    Article  CAS  Google Scholar 

  34. Geber G, Schweizer D (1988) Cytochemical heterochromatin differentiation in Sinapis alba (Cruciferae) using a simple air-drying technique for producing chromosome spreads. Plant Syst Evol 158:97–106

    Article  CAS  Google Scholar 

  35. Conger AD, Fairchild LM (1953) A quick freeze method for making smear slide. Stain Technol 28:281–283

    Article  CAS  Google Scholar 

  36. Schweiser D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 8:307–324

    Article  Google Scholar 

  37. Kondo T, Hizume M (1982) Banding for the chromosomes of Cryptomeria japonica D. Don. J. Jpn For Soc 4:356–358

    Google Scholar 

  38. Martin J, Hesemann CU (1988) Evaluation of improved Giemsa C- and fluorochrome banding techniques in rye chromosome. Heredity 6:459–467

    Article  Google Scholar 

  39. Heslop-Harrison LS, Schwarzacher T, Anamthawat-Jonsson K et al (1991) In situ hybridization with automated chromosome denaturation. Technique 3:109–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Siljak-Yakovlev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Siljak-Yakovlev, S., Pustahija, F., Vičić-Bočkor, V., Robin, O. (2021). Molecular Cytogenetics (Fluorescence In Situ Hybridization - FISH and Fluorochrome Banding): Resolving Species Relationships and Genome Organization. In: Besse, P. (eds) Molecular Plant Taxonomy. Methods in Molecular Biology, vol 2222. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0997-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0997-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0996-5

  • Online ISBN: 978-1-0716-0997-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation