Improving MHC-I Ligand Identification by Incorporating Targeted Searches of Mass Spectrometry Data

  • Protocol
  • First Online:
Bioinformatics for Cancer Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2120))

Abstract

Effective immunotherapies rely on specific activation of immune cells. Class I major histocompatibility complex (MHC-I) bound peptide ligands play a major role in dictating the specificity and activation of CD8+ T cells and hence are important in develo** T cell-based immunotherapies. Mass spectrometry-based approaches are most commonly used for identifying these MHC-bound peptides, wherein the MS/MS spectra are compared against a reference proteome database. Unfortunately, the effectiveness of matching the immunopeptide MS/MS spectra to a reference proteome database is hindered by inflated search spaces attributed to a lack of enzyme restriction in searches. These large search spaces limit the efficiency with which MHC-I peptides are identified. Here, we describe the implementation of a targeted database search approach and accompanying tool, SpectMHC, that is based on a priori-predicted MHC-I peptides. We have previously shown that this targeted search strategy improved peptide identifications for both mouse and human MHC ligands by greater than two-fold and is superior to traditional “no enzyme” search of reference proteomes (Murphy et al. J Res Proteome 16:1806–1816, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 99.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rock KL, Reits E, Neefjes J (2016) Present yourself! By MHC class I and MHC class II molecules. Trends Immunol 37(11):724–737

    Article  CAS  Google Scholar 

  2. Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473

    Article  CAS  Google Scholar 

  3. Caron E, Kowalewski DJ, Koh CC et al (2015) Analysis of major histocompatibility complex (MHC) immunopeptidomes using mass spectrometry. Mol Cell Proteomics 14(12):3105–3117

    Article  CAS  Google Scholar 

  4. Kowalewski DJ, Schuster H, Backert L et al (2015) HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia. Proc Natl Acad Sci 112(2):E166–E175

    Article  CAS  Google Scholar 

  5. Noble WS (2015) Mass spectrometrists should search only for peptides they care about. Nat Methods 12(7):605–608

    Article  CAS  Google Scholar 

  6. Frewen WE, Merrihew GE, Wu CC et al (2006) Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries. Anal Chem 78:5678–5684

    Article  CAS  Google Scholar 

  7. Andreatta M, Nielsen M (2015) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32(4):511–517

    Article  Google Scholar 

  8. Jurtz V, Paul S, Andreatta M et al (2017) NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199(9):3360–3368

    Article  CAS  Google Scholar 

  9. Nielsen M, Lundegaard C, Worning P et al (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–1017

    Article  CAS  Google Scholar 

  10. Murphy JP, Konda P, Kowalewski DJ et al (2017) MHC-I ligand discovery using targeted database searches of mass spectrometry data: implications for T-cell immunotherapies. J Proteome Res 16:1806–1816

    Article  CAS  Google Scholar 

  11. Scholtalbers J, Boegel S, Bukur T et al (2015) TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression. Genome Med 7(1):118

    Article  Google Scholar 

  12. Boegel S, Scholtalbers J, Löwer M et al (2015) In silico HLA ty** using standard RNA-Seq sequence reads. Methods Mol Biol 1310:247–258

    Article  Google Scholar 

  13. Huang Y, Yang J, Ying D et al (2015) HLAreporter: a tool for HLA ty** from next generation sequencing data. Genome Med 7(1):25

    Article  Google Scholar 

  14. Warren RL, Choe G, Freeman DJ et al (2012) Derivation of HLA types from shotgun sequence datasets. Genome Med 4(12):95

    Article  CAS  Google Scholar 

  15. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214

    Article  CAS  Google Scholar 

  16. Bilich T, Nelde A, Bichmann L et al (2019) The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. Blood 133(6):550–565

    Article  CAS  Google Scholar 

  17. Smart AC, Margolis CA, Pimentel H et al (2018) Intron retention is a source of neoepitopes in cancer. Nat Biotechnol 36(11):1056–1058

    Article  CAS  Google Scholar 

  18. Laumont CM, Vincent K, Hesnard L et al (2018) Noncoding regions are the main source of targetable tumor-specific antigens. Sci Transl Med 10(470):eaau5516

    Article  CAS  Google Scholar 

  19. Yadav M, Jhunjhunwala S, Phung QT et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576

    Article  CAS  Google Scholar 

  20. Sheynkman GM, Shortreed MR, Cesnik AJ et al (2016) Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Annu Rev Anal Chem 9:521–545

    Article  Google Scholar 

  21. Khodadoust MS, Olsson N, Wagar LE et al (2017) Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature 543(7647):723

    Article  CAS  Google Scholar 

  22. Wen J, Tang WW, Sheets N et al (2017) Identification of Zika virus epitopes reveals immunodominant and protective roles for dengue virus cross-reactive CD8+ T cells. Nat Microbiol 2(6):17036

    Article  Google Scholar 

  23. Hansen SG, Wu HL, Burwitz BJ et al (2016) Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex E. Science 351(6274):714–720

    Article  CAS  Google Scholar 

  24. Thiele F, Tao S, Zhang Y et al (2015) Modified vaccinia virus Ankara-infected dendritic cells present CD4+ T-cell epitopes by endogenous major histocompatibility complex class II presentation pathways. J Virol 89(5):2698–2709

    Article  Google Scholar 

  25. Liepe J, Marino F, Sidney J et al (2016) A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354(6310):354–358

    Article  CAS  Google Scholar 

  26. Nagarajan NA, De Verteuil DA, Sriranganadane D et al (2016) ERAAP shapes the peptidome associated with classical and nonclassical MHC class I molecules. J Immunol 197(4):1035–1043

    Article  CAS  Google Scholar 

  27. Laumont CM, Daouda T, Laverdure JP et al (2016) Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat Commun 5(7):10238

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Steven Gygi (Department of Cell Biology, Harvard Medical School), Dr. Stefan Stevanovic, Dr. Dan Kowalewski, and Dr. Heiko Schuster (Department of Immunology, Institute for Cell Biology, University of Tubingen) for helpful discussions in devising the targeted database search approach. We also acknowledge financial support from the Canadian Institutes of Health Research (CIHR), Canadian Cancer Society Research Institute (CCSRI), the Beatrice Hunter Cancer Research Institute (BHCRI), and the Dalhousie Medical Research Foundation (DMRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Gujar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Konda, P., Murphy, J.P., Gujar, S. (2020). Improving MHC-I Ligand Identification by Incorporating Targeted Searches of Mass Spectrometry Data. In: Boegel, S. (eds) Bioinformatics for Cancer Immunotherapy. Methods in Molecular Biology, vol 2120. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0327-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0327-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0326-0

  • Online ISBN: 978-1-0716-0327-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation