Preclinical Cancer Pain Models

  • Chapter
  • First Online:
Cancer Pain

Abstract

This chapter describes animal models of cancer pain and the changes observed in these models based on our experience in studying pain and data from the literature. We provide examples of animal models of nonbone cancer pain, including skin, pancreatic, orofacial, and neuroma models. Many of the most common tumours, such as breast, prostate, kidney, thyroid, and lung cancer, undergo bone metastasis in animals; therefore, we also describe models of cancer pain that appear spontaneously and can be induced in bones. Moreover, we discuss models of neuropathic cancer pain, which is the most difficult for analgesia treatment in clinical settings and can be induced by both invasion and chemotherapy, and we collected data on immune factors important for cancer pain development in animal models. Furthermore, we also discuss the use of different behavioural methods to measure changes in the nociceptive threshold, which is diminished under cancer pain using electrical, mechanical, and thermal stimulation and the registration of motor disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van den Beuken-van Everdingen MH, de Rijke JM, Kessels AG, Schouten HC, van Kleef M, Patijn J. High prevalence of pain in patients with cancer in a large population-based study in The Netherlands. Pain. 2007;132:312–20.

    Article  PubMed  Google Scholar 

  2. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20 Pt 2):6243s–9.

    Article  PubMed  Google Scholar 

  3. Mercadante S, Fulfaro F. Management of painful bone metastases. Curr Opin Oncol. 2007;19:308–14.

    Article  PubMed  Google Scholar 

  4. Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res. 1990;50:6130–8.

    PubMed  CAS  Google Scholar 

  5. Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM. Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer. 2005;5 Suppl 2:S46–53.

    Article  PubMed  CAS  Google Scholar 

  6. Mercadante S. Malignant bone pain: pathophysiology and treatment. Pain. 1997;69:1–18.

    Article  PubMed  CAS  Google Scholar 

  7. Miao XR, Gao XF, Wu JX, Lu ZJ, Huang ZX, Li XQ, et al. Bilateral downregulation of Nav1.8 in dorsal root ganglia of rats with bone cancer pain induced by inoculation with Walker 256 breast tumor cells. BMC Cancer. 2010;10:216.

    Article  PubMed  CAS  Google Scholar 

  8. Saad F, Lipton A. Bone-marker levels in patients with prostate cancer: potential correlations with outcomes. Curr Opin Support Palliat Care. 2010;4:127–34.

    Article  PubMed  Google Scholar 

  9. Cain DM, Wacnik PW, Eikmeier L, Beitz A, Wilcox GL, Simone DA. Functional interactions between tumor and peripheral nerve in a model of cancer pain in the mouse. Pain Med. 2001;2:15–23.

    Article  PubMed  CAS  Google Scholar 

  10. Wacnik PW, Eikmeier LJ, Ruggles TR, Ramnaraine ML, Walcheck BK, Beitz AJ, et al. Functional interactions between tumor and peripheral nerve: morphology, algogen identification, and behavioral characterization of a new murine model of cancer pain. J Neurosci. 2001;21:9355–66.

    PubMed  CAS  Google Scholar 

  11. Connelly E, Markman M, Kennedy A, Webster K, Kulp B, Peterson G, et al. Paclitaxel delivered as a 3-hr infusion with cisplatin in patients with gynecologic cancers: unexpected incidence of neurotoxicity. Gynecol Oncol. 1996;62:166–8.

    Article  PubMed  CAS  Google Scholar 

  12. Sasamura T, Nakamura S, Iida Y, Fujii H, Murata J, Saiki I, et al. Morphine analgesia suppresses tumor growth and metastasis in a mouse model of cancer pain produced by orthotopic tumor inoculation. Eur J Pharmacol. 2002;441:185–91.

    Article  PubMed  CAS  Google Scholar 

  13. Constantin CE, Mair N, Sailer CA, Andratsch M, Xu ZZ, Blumer MJ, et al. Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model. J Neurosci. 2008;28:5072–81.

    Article  PubMed  CAS  Google Scholar 

  14. Mao-Ying QL, Cui KM, Liu Q, Dong ZQ, Wang W, Wang J, et al. Stage-dependent analgesia of electro-acupuncture in a mouse model of cutaneous cancer pain. Eur J Pain. 2006;10:689–94.

    Article  PubMed  Google Scholar 

  15. Andoh T, Sugiyama K, Fujita M, Iida Y, Nojima H, Saiki I, et al. Pharmacological evaluation of morphine and non-opioid analgesic adjuvants in a mouse model of skin cancer pain. Biol Pharm Bull. 2008;3:520–2.

    Article  Google Scholar 

  16. Negin BP, Riedel E, Oliveria SA, Berwick M, Coit DG, Brady MS. Symptoms and signs of primary melanoma: important indicators of Breslow depth. Cancer. 2003;98:344–8.

    Article  PubMed  Google Scholar 

  17. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2007;57:43–66.

    Article  PubMed  Google Scholar 

  18. Lindsay TH, Jonas BM, Sevcik MA, Kubota K, Halvorson KG, Ghilardi JR, et al. Pancreatic cancer pain and its correlation with changes in tumor vasculature, macrophage infiltration, neuronal innervation, body weight, and disease progression. Pain. 2005;119:233–46.

    Article  PubMed  CAS  Google Scholar 

  19. Sevcik MA, Jonas BM, Lindsay TH, Halvorson KG, Ghilardi JR, Kuskowski MA, et al. Endogenous opioids inhibit early-stage pancreatic pain in a mouse model of pancreatic cancer. Gastroenterology. 2006;131:900–10.

    Article  PubMed  CAS  Google Scholar 

  20. di Mola FF, di Sebastiano P. Pain and pain generation in pancreatic cancer. Langenbecks Arch Surg. 2008;393:919–22.

    Article  PubMed  Google Scholar 

  21. Nagamine K, Ozaki N, Shinoda M, Asai H, Nishiguchi H, Mitsudo K, et al. Mechanical allodynia and thermal hyperalgesia induced by experimental squamous cell carcinoma of the lower gingiva in rats. J Pain. 2006;7:659–70.

    Article  PubMed  Google Scholar 

  22. Tyner TR, Parks N, Faria S, Simons M, Stapp B, Curtis B, et al. Effects of collagen nerve guide on neuroma formation and neuropathic pain in a rat model. Am J Surg. 2007;193:e1–6.

    Article  PubMed  Google Scholar 

  23. Dorsi MJ, Chen L, Murinson BB, Pogatzki-Zahn EM, Meyer RA, Belzberg AJ. The tibial neuroma transposition (TNT) model of neuroma pain and hyperalgesia. Pain. 2008;134:320–34.

    Article  PubMed  Google Scholar 

  24. Mercadante S, Arcuri E. Breakthrough pain in cancer patients: pathophysiology and treatment. Cancer Treat Rev. 1998;24:425–32.

    Article  PubMed  CAS  Google Scholar 

  25. Schwei MJ, Honore P, Rogers SD, Salak-Johnson JL, Finke MP, Ramnaraine ML, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci. 1999;19:10886–97.

    PubMed  CAS  Google Scholar 

  26. Honore P, Schwei J, Rogers SD, Salak-Johnson JL, Finke MP, Ramnaraine ML, et al. Cellular and ­neurochemical remodeling of the spinal cord in bone cancer pain. Prog Brain Res. 2000;129:389–97.

    Article  PubMed  CAS  Google Scholar 

  27. Luger NM, Honore P, Sabino MA, Schwei MJ, Rogers SD, Mach DB, et al. Osteoprotegerin diminishes advanced bone cancer pain. Cancer Res. 2001;61:4038–47.

    PubMed  CAS  Google Scholar 

  28. Wacnik PW, Kehl LJ, Trempe TM, Ramnaraine ML, Beitz AJ, Wilcox GL. Tumor implantation in mouse humerus evokes movement-related hyperalgesia exceeding that evoked by intramuscular carrageenan. Pain. 2003;101:175–86.

    Article  PubMed  Google Scholar 

  29. Kehl LJ, Hamamoto DT, Wacnik PW, Croft DL, Norsted BD, Wilcox GL, et al. A cannabinoid agonist differentially attenuates deep tissue hyperalgesia in animal models of cancer and inflammatory muscle pain. Pain. 2003;103:175–86.

    Article  PubMed  CAS  Google Scholar 

  30. Goblirsch M, Mathews W, Lynch C, Alaei P, Gerbi BJ, Mantyh PW, et al. Radiation treatment decreases bone cancer pain, osteolysis and tumor size. Radiat Res. 2004;161:228–34.

    Article  PubMed  CAS  Google Scholar 

  31. Vit JP, Ohara PT, Tien DA, Fike JR, Eikmeier L, Beitz A, et al. The analgesic effect of low-dose focal irradiation in a mouse model of bone cancer is associated with spinal changes in neuromediators of nociception. Pain. 2006;120:188–201.

    Article  PubMed  Google Scholar 

  32. King T, Vardanyan A, Majuta L, Melemedjian O, Nagle R, Cress AE, et al. Morphine treatment accelerates sarcoma-induced bone pain, bone loss, and spontaneous fracture in a murine model of bone cancer. Pain. 2007;132:154–68.

    Article  PubMed  CAS  Google Scholar 

  33. Khasabov SG, Hamamoto DT, Harding-Rose C, Simone DA. Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain. Brain Res. 2007;1180:7–19.

    Article  PubMed  CAS  Google Scholar 

  34. Medhurst SJ, Walker K, Bowes M, Kidd BL, Glatt M, Muller M, et al. A rat model of bone cancer pain. Pain. 2002;96:129–40.

    Article  PubMed  CAS  Google Scholar 

  35. Fox A, Medhurst S, Courade JP, Glatt M, Dawson J, Urban L, et al. Antihyperalgesic activity of the COX2 inhibitor lumiracoxib in a model of bone cancer pain in the rat. Pain. 2004;107:33–40.

    Article  PubMed  CAS  Google Scholar 

  36. Goblirsch MJ, Zwolak P, Clohisy DR. Advances in understanding bone cancer pain. J Cell Biochem. 2005;96:682–8.

    Article  PubMed  CAS  Google Scholar 

  37. Liepe K, Geidel H, Haase M, Hakenberg OW, Runge R, Kotzerke J. New model for the induction of osteoblastic bone metastases in rat. Anticancer Res. 2005;25:1067–73.

    PubMed  CAS  Google Scholar 

  38. Zhang RX, Liu B, Wang L, Ren K, Qiao JT, Berman BM, et al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain. 2005;118:125–36.

    Article  PubMed  CAS  Google Scholar 

  39. Beyreuther BK, Callizot N, Brot MD, Feldman R, Bain SC, Stohr T. Antinociceptive efficacy of lacosamide in rat models for tumor- and chemotherapy-induced cancer pain. Eur J Pharmacol. 2007;565:98–104.

    Article  PubMed  CAS  Google Scholar 

  40. Wenger AS, Mickey DD, Hall M, Silverman LM, Mickey GH, Fried FA. In vitro characterization of MAT LyLu: a Dunning rat prostate adenocarcinoma tumor subline. J Urol. 1984;131:1232–6.

    PubMed  CAS  Google Scholar 

  41. De Ciantis PD, Yashpal K, Henry J, Singh G. Characterization of a rat model of metastatic prostate cancer bone pain. J Pain Res. 2010;3:213–21.

    PubMed  Google Scholar 

  42. Honore P, Luger NM, Sabino MA, Schwei MJ, Rogers SD, Mach DB, et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med. 2000;6:521–8.

    Article  PubMed  CAS  Google Scholar 

  43. Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP. Molecular mechanisms of cancer pain. Nat Rev Cancer. 2002;2:201–9.

    Article  PubMed  CAS  Google Scholar 

  44. Obara I, Mika J, Schafer MK, Przewlocka B. Antagonists of the kappa-opioid receptor enhance allodynia in rats and mice after sciatic nerve ligation. Br J Pharmacol. 2003;140:538–46.

    Article  PubMed  CAS  Google Scholar 

  45. Gao YJ, Cheng JK, Zeng Q, Xu ZZ, Decosterd I, Xu X, et al. Selective inhibition of JNK with a peptide inhibitor attenuates pain hypersensitivity and tumor growth in a mouse skin cancer pain model. Exp Neurol. 2009;219:146–55.

    Article  PubMed  CAS  Google Scholar 

  46. Harada Y. Pituitary role in the growth of metastasizing MRMT-1 mammary carcinoma in rats. Cancer Res. 1976;36:18–22.

    PubMed  CAS  Google Scholar 

  47. Martin LA, Hagen NA. Neuropathic pain in ­cancer patients: mechanisms, syndromes, and clinical controversies. J Pain Symptom Manage. 1997;14:99–117.

    Article  PubMed  CAS  Google Scholar 

  48. Shimoyama M, Tanaka K, Hasue F, Shimoyama N. A mouse model of neuropathic cancer pain. Pain. 2002;99:167–74.

    Article  PubMed  Google Scholar 

  49. Shimoyama M, Tatsuoka H, Ohtori S, Tanaka K, Shimoyama N. Change of dorsal horn neurochemistry in a mouse model of neuropathic cancer pain. Pain. 2005;114:221–30.

    Article  PubMed  CAS  Google Scholar 

  50. Dougherty PM, Cata JP, Cordella JV, Burton A, Weng HR. Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain. 2004;109:132–42.

    Article  PubMed  CAS  Google Scholar 

  51. Ling B, Authier N, Balayssac D, Eschalier A, Coudore F. Behavioral and pharmacological description of oxaliplatin-induced painful neuropathy in rat. Pain. 2007;128:225–34.

    Article  PubMed  CAS  Google Scholar 

  52. Cavaletti G, Bogliun G, Crespi V, Marzorati L, Zincone A, Marzola M, et al. Neurotoxicity and ototoxicity of cisplatin plus paclitaxel in comparison to cisplatin plus cyclophosphamide in patients with epithelial ovarian cancer. J Clin Oncol. 1997;15:199–206.

    PubMed  CAS  Google Scholar 

  53. Strumberg D, Brugge S, Korn MW, Koeppen S, Ranft J, Scheiber G, et al. Evaluation of long-term toxicity in patients after cisplatin-based chemotherapy for nonseminomatous testicular cancer. Ann Oncol. 2002;13:229–36.

    Article  PubMed  CAS  Google Scholar 

  54. Aley KO, Reichling DB, Levine JD. Vincristine hyperalgesia in the rat: a model of painful vincristine neuropathy in humans. Neuroscience. 1996;73:259–65.

    Article  PubMed  CAS  Google Scholar 

  55. Tanner KD, Levine JD, Topp KS. Microtubule disorientation and axonal swelling in unmyelinated sensory axons during vincristine-induced painful neuropathy in rat. J Comp Neurol. 1998;395:481–92.

    Article  PubMed  CAS  Google Scholar 

  56. Mimura Y, Kato H, Eguchi K, Ogawa T. Schedule dependency of paclitaxel-induced neuropathy in mice: a morphological study. Neurotoxicology. 2000;21:513–20.

    PubMed  CAS  Google Scholar 

  57. Lee JJ, Swain SM. Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol. 2006;24:1633–42.

    Article  PubMed  CAS  Google Scholar 

  58. Broyl A, Corthals SL, Jongen JL, van der Holt B, Kuiper R, de Knegt Y, et al. Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol. 2010;11:1057–65.

    Article  PubMed  CAS  Google Scholar 

  59. Asai H, Ozaki N, Shinoda M, Nagamine K, Tohnai I, Ueda M, et al. Heat and mechanical hyperalgesia in mice model of cancer pain. Pain. 2005;117:19–29.

    Article  PubMed  Google Scholar 

  60. Wang XM, Lehky TJ, Brell JM, Dorsey SG. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine. 2012;59:3–9.

    Article  PubMed  CAS  Google Scholar 

  61. Flatters SJ, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain. 2004;109:150–61.

    Article  PubMed  CAS  Google Scholar 

  62. Kohler DR, Goldspiel BR. Paclitaxel (taxol). Pharmacotherapy. 1994;14:3–34.

    PubMed  CAS  Google Scholar 

  63. Rowinsky EK, Chaudhry V, Cornblath DR, Donehower RC. Neurotoxicity of taxol. J Natl Cancer Inst Monogr. 1993;15:107–15.

    PubMed  Google Scholar 

  64. Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med. 1995;332:1004–14.

    Article  PubMed  CAS  Google Scholar 

  65. Wiernik PH, Schwartz EL, Strauman JJ, Dutcher JP, Lipton RB, Paietta E. Phase I clinical and pharmacokinetic study of taxol. Cancer Res. 1987;47:2486–93.

    PubMed  CAS  Google Scholar 

  66. Tamura T, Sasaki Y, Nishiwaki Y, Saijo N. Phase I study of paclitaxel by 3-hour infusion: hypotension just after infusion is one of the major dose-limiting toxicities. Jpn J Cancer Res. 1995;86:1203–9.

    Article  PubMed  CAS  Google Scholar 

  67. Polomano RC, Mannes AJ, Clark US, Bennett GJ. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug paclitaxel. Pain. 2001;94:293–304.

    Article  PubMed  CAS  Google Scholar 

  68. Ueda H. Molecular mechanisms of neuropathic pain—phenotypic switch and initiation mechanisms. Pharmacol Ther. 2006;109:57–77.

    Article  PubMed  CAS  Google Scholar 

  69. De Brabander M, Geuens G, Nuydens R, Willebrords R, De Mey J. Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci USA. 1981;78:5608–12.

    Article  PubMed  Google Scholar 

  70. Quasthoff S, Hartung HP. Chemotherapy-induced peripheral neuropathy. J Neurol. 2002;249:9–17.

    Article  PubMed  CAS  Google Scholar 

  71. Coleman RE. Management of bone metastases. Oncologist. 2000;5:463–70.

    Article  PubMed  CAS  Google Scholar 

  72. Cliffer KD, Siuciak JA, Carson SR, Radley HE, Park JS, Lewis DR, et al. Physiological characterization of taxol-induced large-fiber sensory neuropathy in the rat. Ann Neurol. 1998;43:46–55.

    Article  PubMed  CAS  Google Scholar 

  73. Smith SB, Crager SE, Mogil JS. Paclitaxel-induced neuropathic hypersensitivity in mice: responses in 10 inbred mouse strains. Life Sci. 2004;74:2593–604.

    Article  PubMed  CAS  Google Scholar 

  74. Ledeboer A, Jekich BM, Sloane EM, Mahoney JH, Langer SJ, Milligan ED, et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav Immun. 2007;21:686–98.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang H, Yoon SY, Zhang H, Dougherty PM. Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of Paclitaxel-induced painful neuropathy. J Pain. 2012;13:293–303.

    Article  PubMed  CAS  Google Scholar 

  76. Higuera ES, Luo ZD. A rat pain model of ­vincristine-induced neuropathy. Methods Mol Med. 2004;99:91–8.

    PubMed  CAS  Google Scholar 

  77. Authier N, Coudore F, Eschalier A, Fialip J. Pain-related behaviour during vincristine-induced neuropathy in rats. Neuroreport. 1999;10:965–8.

    Article  PubMed  CAS  Google Scholar 

  78. Joseph EK, Levine JD. Sexual dimorphism for protein kinase C-epsilon signaling in a rat model of vincristine-induced painful peripheral neuropathy. Neuroscience. 2003;119:831–8.

    Article  PubMed  CAS  Google Scholar 

  79. Topp KS, Tanner KD, Levine JD. Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J Comp Neurol. 2000;424:563–76.

    Article  PubMed  CAS  Google Scholar 

  80. Nozaki-Taguchi N, Chaplan SR, Higuera ES, Ajakwe RC, Yaksh TL. Vincristine-induced allodynia in the rat. Pain. 2001;93:69–76.

    Article  PubMed  CAS  Google Scholar 

  81. Dougherty PM, Cata JP, Burton AW, Vu K, Weng HR. Dysfunction in multiple primary afferent fiber subtypes revealed by quantitative sensory testing in patients with chronic vincristine-induced pain. J Pain Symptom Manage. 2007;33:166–79.

    Article  PubMed  CAS  Google Scholar 

  82. **ao WH, Bennett GJ. Chemotherapy-evoked neuropathic pain: abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-L-carnitine. Pain. 2008;135:262–70.

    Article  PubMed  CAS  Google Scholar 

  83. Authier N, Fialip J, Eschalier A, Coudore F. Assessment of allodynia and hyperalgesia after cisplatin administration to rats. Neurosci Lett. 2000;291:73–6.

    Article  PubMed  CAS  Google Scholar 

  84. Gispen WH, Hamers FP, Vecht CJ, Jennekens FG, Neyt JP. ACTH/MSH like peptides in the treatment of cisplatin neuropathy. J Steroid Biochem Mol Biol. 1992;43:179–83.

    Article  PubMed  CAS  Google Scholar 

  85. Boyle FM, Wheeler HR, Shenfield GM. Amelioration of experimental cisplatin and paclitaxel neuropathy with glutamate. J Neurooncol. 1999;41:107–16.

    Article  PubMed  CAS  Google Scholar 

  86. de Koning P, Neijt JP, Jennekens FG, Gispen WH. ORG2766 protects from cisplatin-induced neurotoxicity in rats. Exp Neurol. 1987;97:746–50.

    Article  PubMed  Google Scholar 

  87. Fischer SJ, Podratz JL, Windebank AJ. Nerve growth factor rescue of cisplatin neurotoxicity is mediated through the high affinity receptor: studies in PC12 cells and p75null mouse dorsal root ganglia. Neurosci Lett. 2001;308:1–4.

    Article  PubMed  CAS  Google Scholar 

  88. McDonald ES, Windebank AJ. Cisplatin-induced apoptosis of DRG neurons involves BAX redistribution and cytochrome C release but not FAS receptor signaling. Neurobiol Dis. 2002;9:220–33.

    Article  PubMed  CAS  Google Scholar 

  89. Allen JW, Mantyh PW, Horais K, Tozier N, Rogers SD, Ghilardi JR, et al. Safety evaluation of intrathecal substance P-saporin, a targeted neurotoxin, in dogs. Toxicol Sci. 2006;91:286–98.

    Article  PubMed  CAS  Google Scholar 

  90. ter Laak MP, Hamers FP, Kirk CJ, Gispen WH. rhGGF2 protects against cisplatin-induced neuropathy in the rat. J Neurosci Res. 2000;60:237–44.

    Article  PubMed  Google Scholar 

  91. Pradat PF, Kennel P, Naimi-Sadaoui S, Finiels F, Scherman D, Orsini C, et al. Viral and nonviral gene therapy partially prevents experimental cisplatin-induced neuropathy. Gene Ther. 2002;9:1333–7.

    Article  PubMed  CAS  Google Scholar 

  92. Tassler P, Dellon AL, Lesser GJ, Grossman S. Utility of decompressive surgery in the prophylaxis and treatment of cisplatin neuropathy in adult rats. J Reconstr Microsurg. 2000;16:457–63.

    Article  PubMed  CAS  Google Scholar 

  93. Vietor NO, George BJ. Oxaliplatin-induced hepatocellular injury and ototoxicity: a review of the literature and report of unusual side effects of a commonly used chemotherapeutic agent. J Oncol Pharm Pract. 2012;18:355–9.

    Article  PubMed  CAS  Google Scholar 

  94. Sakurai M, Egashira N, Kawashiri T, Yano T, Ikesue H, Oishi R. Oxaliplatin-induced neuropathy in the rat: involvement of oxalate in cold hyperalgesia but not mechanical allodynia. Pain. 2009;147:165–74.

    Article  PubMed  CAS  Google Scholar 

  95. Cavaletti G, Gilardini A, Canta A, Rigamonti L, Rodriguez-Menendez V, Ceresa C, et al. Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol. 2007;204:317–25.

    Article  PubMed  CAS  Google Scholar 

  96. Stratogianni A, Tosch M, Schlemmer H, Weis J, Katona I, Isenmann S, Haensch CA. Bortezomib-induced severe autonomic neuropathy. Clin Auton Res. 2012;22:199–202.

    Article  PubMed  CAS  Google Scholar 

  97. Galasko CS. Diagnosis of skeletal metastases and assessment of response to treatment. Clin Orthop Relat Res. 1995;312:64–75.

    PubMed  Google Scholar 

  98. Watkins LR, Maier SF. Implications of immune-to-brain communication for sickness and pain. Proc Natl Acad Sci USA. 1999;96:7710–3.

    Article  PubMed  CAS  Google Scholar 

  99. DeLeo JA, Yezierski RP. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain. 2001;90:1–6.

    Article  PubMed  CAS  Google Scholar 

  100. Nelson JB, Carducci MA. The role of endothelin-1 and endothelin receptor antagonists in prostate cancer. BJU Int. 2000;85 Suppl 2:45–8.

    Article  PubMed  CAS  Google Scholar 

  101. Davar G. Endothelin-1 and metastatic cancer pain. Pain Med. 2001;2:24–7.

    Article  PubMed  CAS  Google Scholar 

  102. Watkins LR, Hansen MK, Nguyen KT, Lee JE, Maier SF. Dynamic regulation of the proinflammatory cytokine, interleukin-1beta: molecular biology for non-molecular biologists. Life Sci. 1999;65:449–81.

    Article  PubMed  CAS  Google Scholar 

  103. Oprée A, Kress M. Involvement of the proinflammatory cytokines tumor necrosis factor-alpha, IL-1 beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J Neurosci. 2000;20:6289–93.

    PubMed  Google Scholar 

  104. Purow BW, Sundaresan TK, Burdick MJ, Kefas BA, Comeau LD, Hawkinson MP, et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis. 2008;29:918–25.

    Article  PubMed  CAS  Google Scholar 

  105. Roman C, Saha D, Beauchamp R. TGF-beta and colorectal carcinogenesis. Microsc Res Tech. 2001;52:450–7.

    Article  PubMed  CAS  Google Scholar 

  106. Radinsky R. Growth factors and their receptors in metastasis. Semin Cancer Biol. 1991;2:169–77.

    PubMed  CAS  Google Scholar 

  107. Lin Z, Sugai JV, ** Q, Chandler LA, Giannobile WV. Platelet-derived growth factor-B gene delivery sustains gingival fibroblast signal transduction. J Periodontal Res. 2008;43:440–9.

    Article  PubMed  CAS  Google Scholar 

  108. Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci. 2001;24:450–5.

    Article  PubMed  CAS  Google Scholar 

  109. Cata JP, Weng HR, Chen JH, Dougherty PM. Altered discharges of spinal wide dynamic range neurons and down-regulation of glutamate transporter expression in rats with paclitaxel-induced hyperalgesia. Neuroscience. 2006;138:329–38.

    Article  PubMed  CAS  Google Scholar 

  110. Sweitzer SM, Pahl JL, DeLeo JA. Propentofylline attenuates vincristine-induced peripheral neuropathy in the rat. Neurosci Lett. 2006;400:258–61.

    Article  PubMed  CAS  Google Scholar 

  111. Ignatowski TA, Covey WC, Knight PR, Severin CM, Nickola TJ, Spengler RN. Brain-derived TNF alpha mediates neuropathic pain. Brain Res. 1999;841:70–7.

    Article  PubMed  CAS  Google Scholar 

  112. Sacerdote P, Franchi S, Trovato AE, Valsecchi AE, Panerai AE, Colleoni M. Transient early expression of TNF-alpha in sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy. Neurosci Lett. 2008;436:210–3.

    Article  PubMed  CAS  Google Scholar 

  113. Wei F, Guo W, Zou S, Ren K, Dubner R. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci. 2008;28:10482–95.

    Article  PubMed  CAS  Google Scholar 

  114. Jancálek R, Dubový P, Svízenská I, Klusáková I. Bilateral changes of TNF-alpha and IL-10 protein in the lumbar and cervical dorsal root ganglia following a unilateral chronic constriction injury of the sciatic nerve. J Neuroinflammation. 2010;7:11.

    Article  PubMed  CAS  Google Scholar 

  115. Sfikakis PP. The first decade of biologic TNF antagonists in clinical practice: lessons learned, unresolved issues and future directions. Curr Dir Autoimmun. 2010;11:180–210.

    Article  PubMed  CAS  Google Scholar 

  116. Gu X, Zheng Y, Ren B, Zhang R, Mei F, Zhang J, et al. Intraperitoneal injection of thalidomide attenuates bone cancer pain and decreases spinal tumor necrosis factor-α expression in a mouse model. Mol Pain. 2010;6:64.

    Article  PubMed  CAS  Google Scholar 

  117. Tobinick EL. Targeted etanercept for treatment-refractory pain due to bone metastasis: two case reports. Clin Ther. 2003;25:2279–88.

    Article  PubMed  Google Scholar 

  118. Quesada JR, Talpaz M, Rios A, Kurzrock R, Gutterman JU. Clinical toxicity of interferons in cancer patients: a review. J Clin Oncol. 1986;4:234–43.

    PubMed  CAS  Google Scholar 

  119. Mahmoud HH, Pui CH, Kennedy W, Jaffe HS, Crist WM, Murphy SB. Phase I study of recombinant human interferon gamma in children with relapsed acute leukemia. Leukemia. 1992;6:1181–4.

    PubMed  CAS  Google Scholar 

  120. Robertson B, Xu XJ, Hao JX, Wiesenfeld-Hallin Z, Mhlanga J, Grant G, et al. Interferon-gamma receptors in nociceptive pathways: role in neuropathic pain-related behaviour. Neuroreport. 1997;8:1311–6.

    Article  PubMed  CAS  Google Scholar 

  121. Reyes-Gibby CC, Wu X, Spitz M, Kurzrock R, Fisch M, Bruera E, et al. Molecular epidemiology, cancer-related symptoms, and cytokines pathway. Lancet Oncol. 2008;9:777–85. Review.

    Article  PubMed  CAS  Google Scholar 

  122. Meyers CA, Seabrooke LF, Albitar M, Estey EH. Association of cancer-related symptoms with physiological parameters. J Pain Symptom Manage. 2002;24:359–61.

    Article  PubMed  Google Scholar 

  123. Mika J, Korostynski M, Kaminska D, Wawrzczak-Bargiela A, Osikowicz M, Makuch W, et al. Interleukin-1alpha has antiallodynic and antihyperalgesic activities in a rat neuropathic pain model. Pain. 2008;138:587–97.

    Article  PubMed  CAS  Google Scholar 

  124. Alexander GM, van Rijn MA, van Hilten JJ, Perreault MJ, Schwartzman RJ. Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS. Pain. 2005;116:213–9.

    Article  PubMed  CAS  Google Scholar 

  125. Sommer C, Petrausch S, Lindenlaub T, Toyka KV. Neutralizing antibodies to interleukin 1-receptor reduce pain associated behavior in mice with experimental neuropathy. Neurosci Lett. 1999;270:25–8.

    Article  PubMed  CAS  Google Scholar 

  126. Honore P, Wade CL, Zhong C, Harris RR, Wu C, Ghayur T, et al. Interleukin-1alphabeta gene-deficient mice show reduced nociceptive sensitivity in models of inflammatory and neuropathic pain but not post-operative pain. Behav Brain Res. 2006;167:355–64.

    Article  PubMed  CAS  Google Scholar 

  127. Zhang RX, Liu B, Li A, Wang L, Ren K, Qiao JT, et al. Interleukin 1β facilitates bone cancer pain in rats by enhancing NMDA receptor NR-1 subunit phosphorylation. Neuroscience. 2008;154:1533–8.

    Article  PubMed  CAS  Google Scholar 

  128. Tawara K, Oxford JT, Jorcyk CL. Clinical significance of interleukin (IL)-6 in cancer metastasis to bone: potential of anti-IL-6 therapies. Cancer Manag Res. 2011;3:177–89.

    PubMed  CAS  Google Scholar 

  129. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009;206:1457–64.

    Article  PubMed  CAS  Google Scholar 

  130. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol. 2004;14:171–9.

    Article  PubMed  CAS  Google Scholar 

  131. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107:1761–7.

    Article  PubMed  CAS  Google Scholar 

  132. Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett. 2008;267:226–44.

    Article  PubMed  CAS  Google Scholar 

  133. Sheu BC, Chang WC, Cheng CY, Lin HH, Chang DY, Huang SC. Cytokine regulation networks in the cancer microenvironment. Front Biosci. 2008;13:6255–68.

    Article  PubMed  CAS  Google Scholar 

  134. Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA. Chemokines and pain mechanisms. Brain Res Rev. 2009;60:125–34.

    Article  PubMed  CAS  Google Scholar 

  135. Mennicken F, Maki R, de Souza EB, Quirion R. Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol Sci. 1999;20:73–8.

    Article  PubMed  CAS  Google Scholar 

  136. Miller RJ, Rostene W, Apartis E, Banisadr G, Biber K, Milligan ED, et al. Chemokine action in the nervous system. J Neurosci. 2008;28:11792–5.

    Article  PubMed  CAS  Google Scholar 

  137. White FA, Jung H, Miller RJ. Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci USA. 2007;104:20151–8.

    Article  PubMed  CAS  Google Scholar 

  138. Oh SB, Tran PB, Gillard SE, Hurley RW, Hammond DL, Miller RJ. Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci. 2001;21:5027–35.

    PubMed  CAS  Google Scholar 

  139. Bhangoo SK, Ren D, Miller RJ, Chan DM, Ripsch MS, Weiss C, et al. CXCR4 chemokine receptor signaling mediates pain hypersensitivity in association with antiretroviral toxic neuropathy. Brain Behav Immun. 2007;21:581–91.

    Article  PubMed  CAS  Google Scholar 

  140. Franklin KBJ, Abbott FV. Techniques for assessing the effects of drugs on nociceptive responses. In: Boultoun M, Baker GB, Greenshaw AJ, editors. Neuromethods, psychopharmacology. Clifton: The Humana Press; 1989. p. 145–215.

    Chapter  Google Scholar 

  141. Woolf CJ. Long term alterations in the excitability of the flexion reflex produced by peripheral tissue injury in the chronic decerebrate rat. Pain. 1984;18:325–43.

    Article  PubMed  CAS  Google Scholar 

  142. Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309–38.

    Article  PubMed  CAS  Google Scholar 

  143. Maier SF, Wiertelak EP, Watkins LR. Endogenous pain facilitatory systems: antianalgesia and hyperalgesia. J Pain. 1992;1:191–8.

    Google Scholar 

  144. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.

    Article  PubMed  CAS  Google Scholar 

  145. Kaur G, Jaggi AS, Singh N. Exploring the potential effect of Ocimum sanctum in vincristine-induced neuropathic pain in rats. J Brachial Plex Peripher Nerve Inj. 2010;5:3.

    Article  PubMed  Google Scholar 

  146. Ghelardini C, Desaphy JF, Muraglia M, Corbo F, Matucci R, Dipalma A, et al. Effects of a new potent analog of tocainide on hNav1.7 sodium channels and in vivo neuropathic pain models. Neuroscience. 2010;169:863–73.

    Article  PubMed  CAS  Google Scholar 

  147. Machelska H, Schopohl JK, Mousa SA, Labuz D, Schafer M, Stein C. Different mechanisms of intrinsic pain inhibition in early and late inflammation. J Neuroimmunol. 2003;141:30–9.

    Article  PubMed  CAS  Google Scholar 

  148. Bennett GJ, **e YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33:87–107.

    Article  PubMed  CAS  Google Scholar 

  149. Mika J, Osikowicz M, Makuch W, Przewlocka B. Minocycline and pentoxifylline attenuate allodynia and hyperalgesia and potentiate the effects of morphine in rat and mouse models of neuropathic pain. Eur J Pharmacol. 2007;560:142–9.

    Article  PubMed  CAS  Google Scholar 

  150. Boettger MK, Hensellek S, Richter F, Gajda M, Stöckigt R, van Banchet GS, et al. Antinociceptive effects of tumor necrosis factor alpha neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum. 2008;58:2368–78.

    Article  PubMed  CAS  Google Scholar 

  151. Dubner R. Methods of assessing pain in animals. In: Wall PD, Melzack R, editors. Textbook of pain. Edinburgh: Churchville Livingstone; 1989. p. 247–56.

    Google Scholar 

  152. Mika J, Wawrzczak-Bargiela A, Osikowicz M, Makuch W, Przewlocka B. Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Brain Behav Immun. 2009;23:75–84.

    Article  PubMed  CAS  Google Scholar 

  153. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88.

    Article  PubMed  CAS  Google Scholar 

  154. Espejo EF, Mir D. Structure of the rat’s behaviour in the hot plate test. Behav Brain Res. 1993;56:171–6.

    Article  PubMed  CAS  Google Scholar 

  155. Holtman Jr JR, Crooks PA, Johnson-Hardy J, Wala EP. Antinociceptive effects and toxicity of morphine-6-O-sulfate sodium salt in rat models of pain. Eur J Pharmacol. 2010;648:87–94.

    Article  PubMed  CAS  Google Scholar 

  156. Choi Y, Yoon YW, Na HS, Kim SH, Chung JM. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain. 1994;59:369–76.

    Article  PubMed  CAS  Google Scholar 

  157. Wang TC, Hsiao IT, Cheng YK, Wey SP, Yen TC, Lin KJ. Noninvasive monitoring of tumor growth in a rat glioma model: comparison between ­neurological assessment and animal imaging. J Neurooncol. 2011;104:669–78.

    Article  PubMed  CAS  Google Scholar 

  158. De Medinacelli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol. 1982;77:634–43.

    Article  Google Scholar 

  159. De Koning JH, Brakkee WH, Gispen WH. Methods for producing a reproducible crush in the sciatic and tibial nerve of the rat and rapid and precise testing of return of sensory function. J Neurol Sci. 1986;74:237–56.

    Article  PubMed  Google Scholar 

  160. Hamers FP, Lankhorst AJ, van Laar TJ, Veldhuis WB, Gispen WH. Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. J Neurotrauma. 2001;18:187–201.

    Article  PubMed  CAS  Google Scholar 

  161. Doré-Savard L, Otis V, Belleville K, Lemire M, Archambault M, Tremblay L, et al. Behavioral, ­medical imaging and histopathological features of a new rat model of bone cancer pain. PLoS One. 2010;5:e13774.

    Article  PubMed  CAS  Google Scholar 

  162. Siau C, Bennett GJ. Dysregulation of cellular calcium homeostasis in chemotherapy-evoked painful peripheral neuropathy. Anesth Analg. 2006;102:1485–90.

    Article  PubMed  CAS  Google Scholar 

  163. Melli G, Taiana M, Camozzi F, Triolo D, Podini P, Quattrini A, et al. Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol. 2008;214:276–84.

    Article  PubMed  CAS  Google Scholar 

  164. Sun X, Windebank AJ. Calcium in suramin-induced rat sensory neuron toxicity in vitro. Brain Res. 1996;742:149–56.

    Article  PubMed  CAS  Google Scholar 

  165. **ao W, Boroujerdi A, Bennett GJ, Luo ZD. Chemotherapy-evoked painful peripheral neuropathy: analgesic effects of gabapentin and effects on expression of the alpha-2-delta type-1 calcium channel subunit. Neuroscience. 2007;144:714–20.

    Article  PubMed  CAS  Google Scholar 

  166. Alessandri-Haber N, Dina OA, Joseph EK, Reichling DB, Levine JD. Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci. 2008;28:1046–57.

    Article  PubMed  CAS  Google Scholar 

  167. Ta LE, Bieber AJ, Carlton SM, Loprinzi CL, Low PA, Windebank AJ. Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice. Mol Pain. 2010;6:15.

    Article  PubMed  CAS  Google Scholar 

  168. Anand U, Otto WR, Anand P. Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons. Mol Pain. 2010;6:82.

    Article  PubMed  CAS  Google Scholar 

  169. Mangiacavalli S, Corso A, De Amici M, Varettoni M, Alfonsi E, Lozza A, et al. Emergent T-helper 2 profile with high interleukin-6 levels correlates with the appearance of bortezomib-induced neuropathic pain. Br J Haematol. 2010;149:916–8.

    Article  PubMed  Google Scholar 

  170. Scuteri A, Galimberti A, Ravasi M, Pasini S, Donzelli E, Cavaletti G, et al. NGF protects dorsal root ganglion neurons from oxaliplatin by modulating JNK/Sapk and ERK1/2. Neurosci Lett. 2010;486:141–5.

    Article  PubMed  CAS  Google Scholar 

  171. Horvath P, Szilvassy J, Nemeth J, Peitl B, Szilasi M, Szilvassy Z. Decreased sensory neuropeptide release in isolated bronchi of rats with cisplatin-induced neuropathy. Eur J Pharmacol. 2005;507:247–52.

    Article  PubMed  CAS  Google Scholar 

  172. Jamieson SM, Liu JJ, Connor B, Dragunow M, McKeage MJ. Nucleolar enlargement, nuclear eccentricity and altered cell body immunostaining characteristics of large-sized sensory neurons following treatment of rats with paclitaxel. Neurotoxicology. 2007;28:1092–8.

    Article  PubMed  CAS  Google Scholar 

  173. Kamei J, Tamura N, Saitoh A. Possible involvement of the spinal nitric oxide/cGMP pathway in vincristine-induced painful neuropathy in mice. Pain. 2005;117:112–20.

    Article  PubMed  CAS  Google Scholar 

  174. Mihara Y, Egashira N, Sada H, Kawashiri T, Ushio S, Yano T, et al. Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Mol Pain. 2011;7:8.

    Article  PubMed  CAS  Google Scholar 

  175. Sabino MA, Ghilardi JR, Jongen JL, Keyser CP, Luger NM, Mach DB, et al. Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase 2. Cancer Res. 2002;62:7343–9.

    PubMed  CAS  Google Scholar 

  176. Sabino MA, Luger NM, Mach DB, Rogers SD, Schwei MJ, Mantyh PW. Different tumors in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system. Int J Cancer. 2003;104:550–8.

    Article  PubMed  CAS  Google Scholar 

  177. Erin N, Boyer PJ, Bonneau RH, Clawson GA, Welch DR. Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Anticancer Res. 2004;24:1003–9.

    PubMed  Google Scholar 

  178. Andersen C, Bagi CM, Adams SW. Intratibial ­injection of human prostate cancer cell line CWR22 elicits osteoblastic response in immunodeficient rats. J Musculoskelet Neuronal Interact. 2003;3:148–55.

    PubMed  CAS  Google Scholar 

  179. Bauerle T, Adwan H, Kiessling F, Hilbig H, Armbruster FP, Berger MR. Characterization of a rat model with site-specific bone metastasis induced by MDA-MB231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. Int J Cancer. 2005;115:177–86.

    Article  PubMed  CAS  Google Scholar 

  180. Urch CE, Donovan-Rodriguez T, Dickenson AH. Alterations in dorsal horn neurones in a rat model of cancer-induced bone pain. Pain. 2003;106:347–56.

    Article  PubMed  CAS  Google Scholar 

  181. El Mouedden M, Meert TF. Evaluation of pain-related behavior, bone destruction, and effectiveness of fentanyl, sufentanil, and morphine in a murine model of cancer pain. Pharmacol Biochem Behav. 2005;82:109–19.

    Article  PubMed  CAS  Google Scholar 

  182. Baamonde A, Lastra A, Fresno MF, Llames S, Meana A, Hidalgo A, et al. Implantation of tumoral XC cells induces chronic, endothelin-dependent, thermal hyperalgesia in mice. Cell Mol Neurobiol. 2004;24:269–81.

    Article  PubMed  Google Scholar 

  183. Menendez L, Lastra A, Fresno MF, Llames S, Meana A, Hidalgo A, et al. Initial thermal heat hypoalgesia and delayed hyperalgesia in a murine model of bone cancer pain. Brain Res. 2003;969:102–9.

    Article  PubMed  CAS  Google Scholar 

  184. Siau C, **ao W, Bennett GJ. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol. 2006;201:507–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by statutory funds from the Department of Pain Pharmacology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Mika PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Mika, J., Makuch, W., Przewlocka, B. (2013). Preclinical Cancer Pain Models. In: Hanna, M., Zylicz, Z. (eds) Cancer Pain. Springer, London. https://doi.org/10.1007/978-0-85729-230-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-230-8_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-229-2

  • Online ISBN: 978-0-85729-230-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation