GC-MS-Based Determination of Mass Isotopomer Distributions for 13C-Based Metabolic Flux Analysis

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

13C-based metabolic flux analysis is currently the most powerful tool to determine intracellular reaction rates in biological systems and valuable, e.g., for the identification of metabolic engineering targets or the elucidation of metabolic pathway activity and regulation. The method exploits that the carbon backbone of metabolites are often manipulated differently by alternative pathways. If the cells are fed with a specifically 13C-labeled carbon source, the activity of alternative pathways determines the incorporation of the stable isotopes into metabolites and biomass constituents resulting in pathway-specific labeling patterns. In conventional 13C-MFA, cells in metabolic (pseudo-)steady state, i.e., during exponential growth or during steady-state continuous cultivation, are fed with a 13C-labeled carbon source and harvested when the metabolic intermediates or biomass constituents have reached an isotopic labeling steady state. The method is today applied on all types of cells, from microbial to plant to mammalian cells or whole organs, and on diverse carbon sources. State-of-the-art 13C-based metabolic flux analysis most often applies mass spectrometry for the determination of 13C-labeling patterns in intracellular metabolites. Integration of the 13C-enrichment data with biochemical reaction networks and metabolic modeling allows then the calculation of intracellular fluxes.

In this chapter, we give a step-by-step protocol for the setup and validation of gas chromatography-mass spectrometry-based analysis of 13C-mass isotopomer distributions of proteinogenic amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhao J, Shimizu K (2003) Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method. J Biotechnol 101:101–117

    Article  CAS  PubMed  Google Scholar 

  3. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hua Q, Joyce AR, Palsson BO, Fong SS (2007) Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Appl Environ Microbiol 73:4639–4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jorda J, Jouhten P, Camara E, Maaheimo H, Albiol J, Ferrer P (2012) Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: methanol mixtures. Microb Cell Fact 11

    Google Scholar 

  6. Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144:167–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghosh A, Nilmeier J, Weaver D et al (2014) A peptide-based method for 13C metabolic flux analysis in microbial communities. PLoS Comput Biol 10:e1003827

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shaikh AS, Tang YJ, Mukhopadhyay A, Keasling JD (2008) Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein. Anal Chem 80:886–890

    Article  CAS  PubMed  Google Scholar 

  9. Ruhl M, Hardt WD, Sauer U (2011) Subpopulation-specific metabolic pathway usage in mixed cultures as revealed by reporter protein-based 13C analysis. Appl Environ Microbiol 77:1816–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shaikh AS, Tang YJ, Mukhopadhyay A et al (2010) Study of stationary phase metabolism via isotopomer analysis of amino acids from an isolated protein. Biotechnol Prog 26:52–56

    CAS  PubMed  Google Scholar 

  11. Wu C, ** and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides. Plant Physiol 167:586–599

    Article  CAS  PubMed  Google Scholar 

  12. Ma FF, Jazmin LJ, Young JD, Allen DK (2014) Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc Natl Acad Sci U S A 111:16967–16972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hay J, Schwender J (2011) Computational analysis of storage synthesis in develo** Brassica napus L. (oilseed rape) embryos: flux variability analysis in relation to 13C metabolic flux analysis. Plant J 67:513–525

    Article  CAS  PubMed  Google Scholar 

  14. He L, **ao Y, Gebreselassie N et al (2014) Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng 111:575–585

    Article  CAS  PubMed  Google Scholar 

  15. de Graaf AA, Mahle M, Mollney M, Wiechert W, Stahmann P, Sahm H (2000) Determination of full 13C isotopomer distributions for metabolic flux analysis using heteronuclear spin echo difference NMR spectroscopy. J Biotechnol 77:25–35

    Article  PubMed  Google Scholar 

  16. Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649

    Article  CAS  PubMed  Google Scholar 

  17. Blank LM, Desphande RR, Schmid A, Hayen H (2012) Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously. Anal Bioanal Chem 403:2291–2305

    Article  CAS  PubMed  Google Scholar 

  18. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79:7554–7559

    Article  CAS  PubMed  Google Scholar 

  19. Poskar CH, Huege J, Krach C, Franke M, Shachar-Hill Y, Junker BH (2012) iMS2Flux - a high-throughput processing tool for stable isotope labeled mass spectrometric data used for metabolic flux analysis. BMC Bioinformatics 13:295

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ebert BE, Blank LM (2014) Successful downsizing for high-throughput 13C-MFA applications. In: Krömer JO, Nielsen LK, Blank LM (eds) Metabolic flux analysis. Springer, New York, pp 127–142

    Google Scholar 

  21. Zamboni N, Fendt SM, Ruhl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  CAS  PubMed  Google Scholar 

  22. Quek LE, Nielsen LK (2014) Steady-state 13C fluxomics using OpenFLUX. In: Krömer JO, Nielsen LK, Blank LM (eds) Metabolic flux analysis. Springer, New York, pp 209–224

    Google Scholar 

  23. IsoPro 3.1 (2014) https://sites.google.com/site/isoproms/. Accessed 20 Dec 2014

  24. Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283

    Article  CAS  PubMed  Google Scholar 

  25. Weitzel M, Noh K, Dalman T, Niedenfuhr S, Stute B, Wiechert W (2013) 13CFLUX2- high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29:143–145

    Article  CAS  PubMed  Google Scholar 

  26. Quek LE, Wittmann C, Nielsen LK, Kromer JO (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars M. Blank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Schmitz, A., Ebert, B.E., Blank, L.M. (2015). GC-MS-Based Determination of Mass Isotopomer Distributions for 13C-Based Metabolic Flux Analysis. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_78

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_78

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50433-8

  • Online ISBN: 978-3-662-50435-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation