Biofilm-Associated Infections in Chronic Wounds and Their Management

  • Chapter
  • First Online:
Advances in Microbiology, Infectious Diseases and Public Health

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 1434))

Abstract

Chronic wounds including vascular ulcers, diabetic ulcers, pressure ulcers, and burn wounds show delayed progress through the healing process. Some of their common features are prolonged inflammation, persistent infection, and presence of biofilms resistant to antimicrobials and host immune response. Biofilm formation by opportunistic pathogens is a major problem in chronic wound management. Some of the commonly and traditionally used chronic wound management techniques are physical debridement and cleansing. In recent years, novel techniques based on anti-biofilm agents are explored to prevent biofilm-associated infections and facilitate wound healing. In this chapter, the role of biofilms formed by the ESKAPE pathogens (Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa) and Candida species in delayed wound healing have been discussed. The current and emerging techniques in the detection of biofilms for the management of wounds have been focused. The limitations of the existing therapeutics and novel wound management strategies have been deliberated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abootaleb M, Mohammadi Bandari N, Arbab Soleimani N (2021) Interference of Lactiplantibacillus plantarum with Pseudomonas aeruginosa on the infected burns in Wistar rats. J Burn Care Res 34893853

    Google Scholar 

  • Akiyama H, Kanzaki H, Tada J, Arata J (1996) Staphylocococcus aureus infection on cut wounds in the mouse skin: experimental staphylococcal botyomycosis. J Dermatol Sci 11:234

    CAS  PubMed  Google Scholar 

  • Akiyama H, Oono T, Saito M, Iwatsuki K (2004) Assessment of cadexomer iodine against Staphylococcus aureus biofilm in vivo and in vitro using confocal laser scanning microscopy. J Dermatol 31(7):529–534

    CAS  PubMed  Google Scholar 

  • Alves PJ, Barreto RT, Barrois BM, Gryson LG, Meaume S, Monstrey SJ (2021) Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm. Int Wound J 18(3):342–358

    PubMed  Google Scholar 

  • Anju V, Dyavaiah M, Siddhardha B (2021) Wound healing research. Springer, Berlin, pp 643–659

    Google Scholar 

  • Argenta A, Satish L, Gallo P, Liu F, Kathju S (2016) Local application of probiotic bacteria prophylaxes against sepsis and death resulting from burn wound infection. PLoS One 25(10):e0165294

    Google Scholar 

  • Babushkina IV, Mamontova IA, Gladkova EV (2015) Metal nanoparticles reduce bacterial contamination of experimental purulent wounds. Bull Exp Biol Med 158(5):692–694

    CAS  PubMed  Google Scholar 

  • Banin E, Brady KM, Greenberg EP (2006) Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72(3):2064–2069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barki KG, Das A, Dixith S, Ghatak PD, Mathew-Steiner S, Schwab E, Khanna S, Wozniak DJ, Roy S, Sen CK (2019) Electric field based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing. Ann Surg 269(4):756–766

    PubMed  Google Scholar 

  • Bauer J, Siala W, Tulkens PM, Van Bambeke F (2013) A combined pharmacodynamic quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms. Antimicrob Agents Chemother 57(6):2726–2737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt T, Kirketerp-Møller K, Jensen PØ (2008) Why chronic wounds will not heal: a el hypothesis. Wound Repair Regen 16:2

    PubMed  Google Scholar 

  • Bjarnsholt T, Ciofu O, Molin S, Givskov M, Hoiby N (2013) Applying insights from biofilm biology to drug development – can a new approach be developed? Nat Rev Drug Discov 12:791–808

    CAS  PubMed  Google Scholar 

  • Borges EL, Frison SS, Honorato-Sampaio K, Guedes ACM, Lima VLAN, Oliveira OMM, Ferraz AF, Tyrone AC (2018) Effect of Polyhexamethylene Biguanide solution on bacterial load and biofilm in venous leg ulcers: a randomized controlled trial. J Wound Ostomy Cont Nurs 45(5):425–431

    Google Scholar 

  • Brachkova MI, Ques P, Rocha J, Sepodes B, Duarte MA, Pinto JF (2011) Alginate films containing lactobacillus plantarum as wound dressing for prevention of burn infection. J Hosp Infect 79(4):375–377

    CAS  PubMed  Google Scholar 

  • Brandenburg KS, Weaver AJ Jr, Karna SLR, You T, Chen P, Stryk SV, Qian L, Pineda U, Abercrombie JJ, Leung KP (2011) Formation of Pseudomonas aeruginosa biofilms in full-thickness scald burn wounds in rats. Sci Rep 9(1):13627

    Google Scholar 

  • Bruno M, Trucchi B, Burlando B, Ranzato E, Martinotti S, Akkol EK, Süntar I, KeleÅŸ H, Verotta L (2013) (+)-Usnic acid enamines with remarkable cicatrizing properties. Bioorg Med Chem 21(7):1834–1843

    CAS  PubMed  Google Scholar 

  • Castro J, França A, Bradwell KR, Serrano MG, Jefferson KK, Cerca N (2017) Comparative transcriptomic analysis of Gardnerella vaginalis biofilms vs. planktonic cultures using RNA-seq. NPJ Biofilms Microbiomes 3:3

    PubMed  PubMed Central  Google Scholar 

  • Cerqueira L, Azevedo NF, Almeida C, Jardim T, Keevil CW, Vieira MJ (2008) DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 9(10):1944–1960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaney SB, Ganesh K, Mathew-Steiner S, Stromberg P, Roy S, Sen CK, Wozniak DJ (2017) Histopathological comparisons of Staphylococcus aureus and Pseudomonas aeruginosa experimental infected porcine burn wounds. Wound Repair Regen 25(3):541–549

    PubMed  PubMed Central  Google Scholar 

  • Ciani I, Schulze H, Corrigan DK, Henihan G, Giraud G, Terry JG, Walton AJ, Pethig R, Ghazal P, Crain J, Campbell CJ, Bachmann TT, Mount AR (2012) Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy. Biosens Bioelectron 31(1):413–418

    CAS  PubMed  Google Scholar 

  • Daghdari SG, Ahmadi M, Dastmalchi Saei H, Tehrani AA (2017) The effect of ZnO nanoparticles on bacterial load of experimental infectious wounds contaminated with Staphylococcus aureus in mice. Nanomed J 4(4):232–236

    CAS  Google Scholar 

  • Dai T, Gupta A, Huang YY, Yin R, Murray CK, Vrahas MS, Sherwood ME, Tegos GP, Hamblin MR (2013) Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother 57(3):1238–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies CE, Hill KE, Wilson MJ, Stephens P, Hill CM, Harding KG, Thomas DW (2004) Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and nonhealing chronic venous leg ulcers. J Clin Microbiol 42(8):3549–3557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM (2008) Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen 16:23

    PubMed  Google Scholar 

  • Davis SC, Harding A, Gil J, Parajon F, Valdes J, Solis M, Higa A (2017) Effectiveness of a polyhexanide irrigation solution on methicillin-resistant Staphylococcus aureus biofilms in a porcine wound model. Int Wound J 14(6):937–944

    PubMed  PubMed Central  Google Scholar 

  • Donelli G, Vuotto C (2014) Biofilm-based infections in long-term care facilities. Future Microbiol 9(2):175–188

    CAS  PubMed  Google Scholar 

  • Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, Kaplan JB (2007) Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother 51:2733–2740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA (2008) Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonellainfected pigs. Foodborne Pathog Dis 5(4):459–472

    CAS  PubMed  Google Scholar 

  • Drago L, Signori V, De Vecchi E, Vassena C, Palazzi E, Cappelletti L, Romanò D, Romanò CL (2013) Use of dithiothreitol to improve the diagnosis of prosthetic joint infections. J Orthop Res 31(11):1694–1699

    CAS  PubMed  Google Scholar 

  • Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen B, Andersen AS, Krogfelt KA, Givskov M, Tolker-Nielsen T (2009) Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47(12):4084–4089

    PubMed  PubMed Central  Google Scholar 

  • Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen A, Andersen CB, Givskov M (2011) Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Repair Regen 19:387

    PubMed  Google Scholar 

  • Fitzgerald DJ, Renick PJ, Forrest EC, Tetens SP, Earnest DN, McMillan J, Kiedaisch BM, Shi L, Roche ED (2017) Cadexomer iodine provides superior efficacy against bacterial wound biofilms in vitro and in vivo. Wound Repair Regen 25(1):13–24

    PubMed  Google Scholar 

  • Francolini I, Piozzi A, Donelli G (2019) Usnic acid: potential role in management of wound infections. Adv Exp Med Biol 1214:31–41

    CAS  PubMed  Google Scholar 

  • Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care. (New Rochelle) 4(9):560–582

    Google Scholar 

  • Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T, James P, Warland A, Jordan M, Ciccone J, Serra S, Keenan J, Martin S, McNeill L, Wallace EJ, Jayasinghe L, Wright C, Blasco J, Young S, Brocklebank D, Juul S, Clarke J, Heron AJ, Turner DJ (2018) Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods 15(3):201–206

    CAS  PubMed  Google Scholar 

  • Gurjala AN, Geringer MR, Seth AK (2011) Development of highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Repair Regen 19:400

    PubMed  Google Scholar 

  • Han A, Zenilman JM, Melendez JH, Shirtliff ME, Agostinho A, James GA (2011) The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds. Wound Repair Regen 19:532

    PubMed  PubMed Central  Google Scholar 

  • Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M (2011) Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 15(4):305–311

    PubMed  Google Scholar 

  • Higgins PG, Poirel L, Lehmann M, Nordmann P, Seifert H (2009) OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 53(12):5035–5038

    CAS  PubMed  PubMed Central  Google Scholar 

  • James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37

    PubMed  Google Scholar 

  • Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, Rousseau AF, Ravat F, Carsin H, Le Floch R, Schaal JV, Soler C, Fevre C, Arnaud I, Bretaudeau L, Gabard J (2018) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19(1):35–45

    PubMed  Google Scholar 

  • Johani K, Malone M, Jensen SO, Dickson HG, Gosbell IB, Hu H, Yang Q, Schultz G, Vickery K (2018) Evaluation of short exposure times of antimicrobial wound solutions against microbial biofilms: from in vitro to in vivo. J Antimicrob Chemother 73(2):494–502

    CAS  PubMed  Google Scholar 

  • Johnson EN, Burns TC, Hayda RA, Hospenthal DR, Murray CK (2007) Infectious complications of open type III tibial fractures among combat casualties. Clin Infect Dis 45(4):409–415

    PubMed  Google Scholar 

  • Kanno E, Toriyabe S, Zhang L, Imai Y, Tachi M (2010) Biofilm formation on rat skin wounds by Pseudomonas aeruginosa carrying the green fluorescent protein gene. Exp Dermatol 19:154

    PubMed  Google Scholar 

  • Kanno E, Tanno H, Suzuki A, Kamimatsuno R, Tachi M (2016) Reconsideration of iodine in wound irrigation: the effects on Pseudomonas aeruginosa biofilm formation. J Wound Care 25(6):335–339

    CAS  PubMed  Google Scholar 

  • Keen EF 3rd, Robinson BJ, Hospenthal DR, Aldous WK, Wolf SE, Chung KK, Murray CK (2010) Incidence and bacteriology of burn infections at a military burn center. Burns 36(4):461–468

    PubMed  Google Scholar 

  • Kennedy P, Brammah S, Wills E (2010) Burns, biofilm and a new appraisal of burn wound sepsis. Burns 36:49

    PubMed  Google Scholar 

  • Kim D, Namen Ii W, Moore J, Buchanan M, Hayes V, Myntti MF, Hakaim A (2018) Clinical assessment of a biofilm-disrupting agent for the Management of Chronic Wounds Compared with Standard of care: a therapeutic approach. Wounds 30(5):120–130

    PubMed  Google Scholar 

  • Kim JH, Yang B, Tedesco A, Lebig EGD, Ruegger PM, Xu K, Borneman J, Tins-Green M (2019) High levels of oxidative stress and skin microbiome are critical for initiation and development of chronic wounds in diabetic mice. Sci Rep 9(1):19318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Ruegger PR, Lebig EG, VanSchalkwyk S, Jeske DR, Hsiao A, Borneman J, Tins-Green M (2020) High levels of oxidative stress create a microenvironment that significantly increases the diversity of the microbiota in diabetic chronic wounds and promotes biofilm formation. Front Cell Infect Microbiol 10:259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirketerp-Møller K, Jenson PO, Fazli M, Madsen KG, Pedersen J, Moser C (2008) Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol 46:2712

    Google Scholar 

  • Kitamura A, Nakagami G, Yoshida M, Noguchi H, Nishijima Y, Minematsu T, Naito A, Sugawara J, Shibayama H, Takahashi K, Hakuta A, Umemoto J, Terada N, Segawa R, Mori T, Sanada H (2014) Visualization of tumor necrosis factor-α distributions within pressure ulcer tissue using the wound blotting method: a case report and discussion. Wounds 26(11):323–329

    PubMed  Google Scholar 

  • Kumari S, Harjai K, Chhibber S (2011) Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol 60:205–210

    PubMed  Google Scholar 

  • Lee CR, Lee JH, Park KS, Jeon JH, Kim YB, Cha CJ, Jeong BC, Lee SH (2017) Antimicrobial resistance of Hypervirulent Klebsiella pneumoniae: epidemiology, Hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol 21(7):483

    Google Scholar 

  • Lenseilink E, Andriessen A (2011) A cohort study on the efficacy of a polyhexanide-containing biocellulose dressing in the treatment of biofilms in wounds. J Wound Care 534:536–539

    Google Scholar 

  • Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:258

    PubMed  PubMed Central  Google Scholar 

  • Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK (2014) Emerging infections program healthcare-associated infections and antimicrobial use prevalence survey team. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370(13):1198–1208. Erratum in: N Engl J Med. 2022 16;386(24):2348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malic S, Hill KE, Hayes A, Percival SL, Thomas DW, Williams DW (2009) Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology 155:2603–2611

    CAS  PubMed  Google Scholar 

  • Malone M, Johani K, Jensen SO, Gosbell IB, Dickson HG, McLennan S, Hu H, Vickery K (2017) Effect of cadexomer iodine on the microbial load and diversity of chronic non-healing diabetic foot ulcers complicated by biofilm in vivo. J Antimicrob Chemother 72:2093–2101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malone M, Schwarzer S, Radzieta M, Jeffries T, Walsh A, Dickson HG, Micali G, Jensen SO (2019) Effect on total microbial load and community composition with two vs six-week topical Cadexomer iodine for treating chronic biofilm infections in diabetic foot ulcers. Int Wound J 16:1477–1486

    PubMed  PubMed Central  Google Scholar 

  • Malone M, Radzieta M, Schwarzer S, Jensen SO, Lavery LA (2021) Efficacy of a topical concentrated surfactant gel on microbial communities in non-healing diabetic foot ulcers with chronic biofilm infections: a proof-of-concept study. Int Wound J 18(4):457–466

    PubMed  PubMed Central  Google Scholar 

  • Martineau L, Dosch HM (2007a) Biofilm reduction by a new burn gel that targets nociception. J Appl Microbiol 103:297–304

    CAS  PubMed  Google Scholar 

  • Martineau L, Dosch HM (2007b) Management of bioburden with a burn gel that targets nociceptors. J Wound Care 16:157–164

    CAS  PubMed  Google Scholar 

  • Maslova E, Eisaiankhongi L, Sjöberg F, McCarthy RR (2021) Burns and biofilms: priority pathogens and in vivo models. NPJ Biofilms Microbiomes 7(1):73

    PubMed  PubMed Central  Google Scholar 

  • Mendes JJ, Leandro C, Corte-Real S, Barbosa R, Cavaco-Silva P, Melo-Cristino J, Górski A, Garcia M (2013) Wound healing potential of topical bacteriophage therapy on diabetic cutaneous wounds. Wound Repair Regen 21(4):595–603

    PubMed  Google Scholar 

  • Mekkawy AI, El-Mokhtar MA, Nafady NA, Yousef N, Hamad MA, El-Shanawany SM, Ibrahim EH, Elsabahy M (2017) In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int J Nanomedicine 12:759–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minematsu T, Nakagami G, Yamamoto Y, Kanazawa T, Huang L, Koyanagi H, Sasaki S, Uchida G, Fujita H, Haga N, Yoshimura K, Nagase T, Sanada H (2013) Wound blotting: a convenient biochemical assessment tool for protein components in exudate of chronic wounds. Wound Repair Regen 21(2):329–334

    PubMed  Google Scholar 

  • Mota FA, Pereira SA, Araújo AR, Passos ML, Saraiva ML (2021) Biomarkers in the diagnosis of wounds infection: an analytical perspective. TrAC Trends Anal Chem 143:116405

    CAS  Google Scholar 

  • Nakagami G, Schultz G, Gibson DJ, Phillips P, Kitamura A, Minematsu T, Miyagaki T, Hayashi A, Sasaki S, Sugama J, Sanada H (2017) Biofilm detection by wound blotting can predict slough development in pressure ulcers: a prospective observational study. Wound Repair Regen 25(1):131–138

    PubMed  Google Scholar 

  • Neut D, Tijdens-Creusen EJ, Bulstra SK, van der Mei HC, Busscher HJ (2011) Biofilms in chronic diabetic foot ulcers – a study of 2 cases. Acta Orthop 82:383

    PubMed  PubMed Central  Google Scholar 

  • Ngernpimai S, Geng Y, Makabenta JM, Landis RF, Keshri P, Gupta A, Li CH, Chompoosor A, Rotello VM (2019) Rapid identification of biofilms using a robust multichannel polymer sensor Array. ACS Appl Mater Interfaces 11(12):11202–11208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen KT, Seth AK, Hong SJ (2013) Deficient cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound healing in diabetic, biofilm-containing chronic wounds. Wound Repair Regen 21:833–841

    PubMed  Google Scholar 

  • Pastar I, Nusbaum AG, Gil J, Patel SB, Chen J, Valdes J (2013) Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS One 8:e56846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Percival SL, McCarty SM (2015) Silver and alginates: role in wound healing and biofilm control. Adv Wound Care (New Rochelle) 4(7):407–414

    PubMed  Google Scholar 

  • Percival SL, Bowler P, Parson D (2005) Antimicrobial composition. US/WO patent is http://www.google.com.bz/patents/WO2007068938A2?cl=en

  • Percival SL, Suleman L, Francolini I, Donelli G (2014) The effectiveness of photodynamic therapy on planktonic cells and biofilms and its role in wound healing. Future Microbiol 9(9):1083–1094

    CAS  PubMed  Google Scholar 

  • Percival SL, McCarty SM, Lipsky B (2015a) Biofilms and wounds: an overview of the evidence. Adv Wound Care (New Rochelle) 4(7):373–381

    PubMed  Google Scholar 

  • Percival SL, Suleman L, Vuotto C, Donelli G (2015b) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64(Pt 4):323–334

    PubMed  Google Scholar 

  • Percival SL, Vuotto C, Donelli G, Lipsky BA (2015c) Biofilms and wounds: an identification algorithm and potential treatment options. Adv Wound Care 4(7):389–397

    Google Scholar 

  • Percival SL, Francolini I, Donelli G (2015d) Low-level laser therapy as an antimicrobial and antibiofilm technology and its relevance to wound healing. Future Microbiol 10(2):255–272

    CAS  PubMed  Google Scholar 

  • Percival SL, Finnegan S, Donelli G, Vuotto C, Rimmer S, Lipsky BA (2016) Antiseptics for treating infected wounds: efficacy on biofilms and effect of pH. Crit Rev Microbiol 42(2):293–309

    CAS  PubMed  Google Scholar 

  • Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA (2007) Global challenge of multidrugresistant Acinetobacter baumannii. Antimicrob Agents Chemother 51(10):3471–3484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips PL, Yang Q, Schultz GS (2013) The effect of negative pressure wound therapy with periodic instillation using antimicrobial solutions on Pseudomonas aeruginosa biofilm on porcine skin explants. Int Wound J 12:48–55

    Google Scholar 

  • Phillips PL, Yang Q, Davis S, Sampson EM, Azeke JI, Hamad A, Schultz GS (2015) Antimicrobial dressing efficacy against mature Pseudomonas aeruginosa biofilm on porcine skin explants. Int Wound J 12(4):469–483

    PubMed  Google Scholar 

  • Poma N, Vivaldi F, Bonini A, Salvo P, Kirchhain A, Melai B, Bottai D, Tavanti A, Di Francesco F (2020) A graphenic and potentiometric sensor for monitoring the growth of bacterial biofilms. Sensors Actuators B Chem 323:128662

    CAS  Google Scholar 

  • Pozzi C, Waters EM, Rudkin JK, Schaeffer CR, Lohan AJ, Tong P, Loftus BJ, Pier GB, Fey PD, Massey RC, O’Gara JP (2012) Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog 8(4):e1002626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads DD, Wolcott RD, Sun Y, Dowd SE (2012) Comparison of culture and molecular identification of bacteria in chronic wounds. Int J Mol Sci 13(3):2535–2550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roche ED, Renick PJ, Tetens SP, Carson DL (2012a) A model for evaluating topical antimicrobial efficacy against methicillin-resistant Staphylococcus aureus biofilms in superficial murine wounds. Antimicrob Agents Chemother 56:4508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roche ED, Renick PJ, Tetens SP, Ramsay SJ, Daniels EQ, Carson DL (2012b) Increasing the presence of biofilm and healing delay in a porcine model of MRSA-infected wounds. Wound Repair Regen 20:537

    PubMed  Google Scholar 

  • Roche ED, Woodmansey EJ, Yang Q, Gibson DJ, Zhang H, Schultz GS (2019) Cadexomer iodine effectively reduces bacterial biofilm in porcine wounds ex vivo and in vivo. Int Wound J 16(3):674–683

    PubMed  PubMed Central  Google Scholar 

  • Roy S, Elgharably H, Sinha M, Ganesh K, Chaney S, Mann E, Miller C, Khanna S, Bergdall VK, Powell HM, Cook CH, Gordillo GM, Wozniak DJ, Sen CK (2014) Mixed-species biofilm compromises wound healing by disrupting epidermal barrier function. J Pathol 233(4):331–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rumbaugh KP, Griswold JA, Hamood AN (1999) Contribution of the regulatory gene lasR to the pathogenesis of Pseudomonas aeruginosa infection of burned mice. J Burn Care Rehabil 20:42

    CAS  PubMed  Google Scholar 

  • Sanford NE, Wilkinson JE, Nguyen H, Diaz G, Wolcott R (2018) Efficacy of hyperbaric oxygen therapy in bacterial biofilm eradication. J Wound Care 27(Sup1):S20–S28

    PubMed  Google Scholar 

  • Schaber JA, Triffo WJ, Suh SJ, Oliver JW, Hastert MC, Griswold JA (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signalling. Infect Immun 75:3715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schierle CF, De la Garza M, Mustoe TA, Galiano RD (2009) Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen 17:354

    PubMed  Google Scholar 

  • Schultz G, Bjarnsholt T, James GA, Leaper DJ, McBain AJ, Malone M, Stoodley P, Swanson T, Tachi M, Wolcott RD (2017) Global wound biofilm expert panel. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen 25(5):744–757

    PubMed  Google Scholar 

  • Serralta VW, Harrison-Balestra C, Cazzaniga AL (2001) Lifestyles of bacteria in wounds: presence of biofilms? Wounds 13:29

    Google Scholar 

  • Seth AK, Geringer MR, Galiano RD, Leung KP, Mustoe TA, Hong SJ (2012a) Quantitative comparison and analysis of species-specific wound biofilm virulence using an in vivo, rabbit ear model. J Am Coll Surg 215:388

    PubMed  Google Scholar 

  • Seth AK, Geringer MR, Hong SJ, Leung KP, Galiano RD, Mustoe TA (2012b) Comparative analysis of single-species and polybacterial wound biofilms using a quantitative, in vivo, rabbit ear model. PLoS One 7:e42897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaswamy VC, Kalasuramath SB, Sadanand CK, Basavaraju AK, Ginnavaram V, Bille S, Ukken SS, Pushparaj UN (2015) Ability of bacteriophage in resolving wound infection caused by multidrug-resistant Acinetobacter baumannii in uncontrolled diabetic rats. Microb Drug Resist 21(2):171–177

    CAS  PubMed  Google Scholar 

  • Su S, Shi X, Xu W, Li Y, Chen X, Jia S, Sun S (2020) Antifungal activity and potential mechanism of Panobinostat in combination with fluconazole against Candida albicans. Front Microbiol 11:1584

    PubMed  PubMed Central  Google Scholar 

  • Tan X, Qin N, Wu C, Sheng J, Yang R, Zheng B, Ma Z, Liu L, Peng X, Jia A (2015) Transcriptome analysis of the biofilm formed by methicillin-susceptible Staphylococcus aureus. Sci Rep 7(5):11997

    Google Scholar 

  • Thompson MG, Black CC, Pavlicek RL (2014) Validation of a murine wound model of Acinetobacter baumannii infection. Antimicrob Agents Chemother 58:1332

    PubMed  PubMed Central  Google Scholar 

  • Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186(11):6585–6596

    CAS  PubMed  Google Scholar 

  • Tipton CD, Mathew ME, Wolcott RA, Wolcott RD, Kingston T, Phillips CD (2017) Temporal dynamics of relative abundances and bacterial succession in chronic wound communities. Wound Repair Regen 25(4):673–679

    PubMed  Google Scholar 

  • Tipton CD, Wolcott RD, Sanford NE, Miller C, Pathak G, Silzer TK, Sun J, Fleming D, Rumbaugh KP, Little TD, Phillips N, Phillips CD (2020) Patient genetics is linked to chronic wound microbiome composition and healing. PLoS Pathog 16(6):e1008511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, Mandrekar JN, Cockerill FR, Steckelberg JM, Greenleaf JF, Patel R (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357(7):654–663

    CAS  PubMed  Google Scholar 

  • Trostrup H, Thomsen K, Christophersen LJ (2013) Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in chronic wound model. Wound Repair Regen 21:292

    PubMed  Google Scholar 

  • Trostrup H, Lerche CJ, Christophersen LJ, Thomsen K, Jensen PØ, Hougen HP, Høiby N, Moser C (2017) Chronic Pseudomonas aeruginosa biofilm infection impairs murine S100A8/A9 and neutrophil effector cytokines-implications for delayed wound closure? Pathog Dis 29(7)

    Google Scholar 

  • Trostrup H, Lerche CJ, Christophersen LJ, Thomsen K, Jensen PØ, Hougen HP, Høiby N, Moser C (2018) Pseudomonas aeruginosa biofilm hampers murine central wound healing by suppression of vascular epithelial growth factor. Int Wound J 15(1):123–132

    PubMed  Google Scholar 

  • Vagesjo E, Öhnstedt E, Mortier A, Lofton H, Huss F, Proost P, Roos S, Phillipson M (2018) Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Proc Natl Acad Sci U S A 115(8):1895–1900

    PubMed  PubMed Central  Google Scholar 

  • Valdez JC, Peral MC, Rachid M, Santana M, Perdigón G (2005) Interference of lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns: the potential use of probiotics in wound treatment. Clin Microbiol Infect 11(6):472–479

    CAS  PubMed  Google Scholar 

  • Vanegas JM, Higuita LF, Vargas CA, Cienfuegos AV, Rodríguez ÉA, Roncancio GE, Jiménez JN (2015) Carbapenem-resistant Acinetobacter baumannii causing osteomyelitis and infections of skin and soft tissues in hospitals of Medellín. Colomb Biomedica 35(4):522–530

    Google Scholar 

  • Velasco C, Dunn C, Sturdy C, Izda V, Tin J, Rivas A, McNaughton J, Jeffries MA (2021) Ear wound healing in MRL/MpJ mice is associated with gut microbiome composition and is transferable to non-healer mice via microbiome transplantation. PLoS One 16(7):e0248322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vuotto C, Donelli G (2015) Anaerobes in biofilm-based healthcare-associated infections. Adv Exp Med Biol 830:97–112

    PubMed  Google Scholar 

  • Wang Y, Wu X, Chen J, Amin R, Lu M, Bhayana B, Zhao J, Murray CK, Hamblin MR, Hooper DC, Dai T (2016) Antimicrobial blue light inactivation of gram-negative pathogens in biofilms: in vitro and in vivo studies. J Infect Dis 213(9):1380–1387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Li Z, Li T, Wang S, Zhang L, Zhang L, Tang P (2018) Negative-pressure wound therapy in a Pseudomonas aeruginosa infection model. Biomed Res Int 9496183

    Google Scholar 

  • Watters C, DeLeon K, Trivedi U, Griswold JA, Lyte M, Hampel KJ (2013) Pseudomonas aeruginosa biofilms perturb wound resolution and antibiotic tolerance in diabetic mice. Med Microbiol Immunol 202:131

    CAS  PubMed  Google Scholar 

  • Wei Q, Zhang Z, Luo J, Kong J, Ding Y, Chen Y, Wang K (2019) Insulin treatment enhances pseudomonas aeruginosa biofilm formation by increasing intracellular cyclic di-GMP levels, leading to chronic wound infection and delayed wound healing. Am J Transl Res 11(6):3261–3279. Erratum in: Am J Transl Res. 2020 15;12(12):8259-8261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wintachai P, Surachat K, Singkhamanan K (2022) Isolation and characterization of a el Autographiviridae phage and its combined effect with Tigecycline in controlling multidrug-resistant Acinetobacter baumannii-associated skin and soft tissue infections. Viruses 14(2):194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolcott R (2015) Disrupting the biofilm matrix improves wound healing outcomes. J Wound Care 24(8):366–371

    CAS  PubMed  Google Scholar 

  • Xu Z, Fang X, Wood TK, Huang ZJ (2013) A systems-level approach for investigating Pseudomonas aeruginosa biofilm formation. PLoS One 8(2):e57050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Larose C, Della Porta AC, Schultz GS, Gibson DJ (2017) A surfactant-based wound dressing can reduce bacterial biofilms in a porcine skin explant model. Int Wound J 14(2):408–413

    PubMed  Google Scholar 

  • Yasuda H, Ajiki Y, Koga T, Kawada H, Yokota T (1993) Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin. Antimicrob Agents Chemother 37(9):1749–1755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Liu Y (2010) N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa. BMC Microbiol 12(10):140

    Google Scholar 

  • Zhao G, Hochwalt PC, Usui ML (2010) Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen 18:467

    PubMed  PubMed Central  Google Scholar 

  • Zhao G, Usui ML, Underwood RA (2012) Time course study of delayed wound healing in a biofilm-challenged diabetic mouse model. Wound Repair Regen 20:342

    PubMed  PubMed Central  Google Scholar 

  • Zmuda HM, Mohamed A, Raval YS, Call DR, Schuetz AN, Patel R, Beyenal H (2020) Hypochlorous acidgenerating electrochemical scaffold eliminates Candida albicans biofilms. J Appl Microbiol 129(4):776–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zolb C, Cech JD (2016) Efficacy of a new multifunctional surfactant-based biomaterial dressing with 1% silver sulphadiazine in chronic wounds. Int Wound J 13(5):738–743

    Google Scholar 

  • Zurawski DV, Black CC, Alamneh YA, Biggemann L, Banerjee J, Thompson MG, Wise MC, Honnold CL, Kim RK, Paranavitana C, Shearer JP, Tyner SD, Demons ST (2019) A porcine wound model of Acinetobacter baumannii infection. Adv Wound Care 8(1):14–27

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Special Interest Group on Biofilms in Clinical Settings and their Control, JSS Academy of Higher Education and Research, Mysore.

Author’s Contribution

JBA, PR, and SHM drafted the manuscript. The manuscript was conceived, reviewed, and supervised by JBA, SGS, and RRV. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of Data and Materials

Not applicable.

Declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamuna Bai Aswathanarayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aswathanarayan, J.B., Rao, P., HM, S., GS, S., Rai, R.V. (2022). Biofilm-Associated Infections in Chronic Wounds and Their Management. In: Donelli, G. (eds) Advances in Microbiology, Infectious Diseases and Public Health. Advances in Experimental Medicine and Biology(), vol 1434. Springer, Cham. https://doi.org/10.1007/5584_2022_738

Download citation

Publish with us

Policies and ethics

Navigation