Cardiac hERG K+ Channel as Safety and Pharmacological Target

  • Chapter
  • First Online:
Pharmacology of Potassium Channels

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 267))

Abstract

The human ether-á-go-go related gene (hERG, KCNH2) encodes the pore-forming subunit of the potassium channel responsible for a fast component of the cardiac delayed rectifier potassium current (IKr). Outward IKr is an important determinant of cardiac action potential (AP) repolarization and effectively controls the duration of the QT interval in humans. Dysfunction of hERG channel can cause severe ventricular arrhythmias and thus modulators of the channel, including hERG inhibitors and activators, continue to attract intense pharmacological interest. Certain inhibitors of hERG channel prolong the action potential duration (APD) and effective refractory period (ERP) to suppress premature ventricular contraction and are used as class III antiarrhythmic agents. However, a reduction of the hERG/IKr current has been recognized as a predominant mechanism responsible for the drug-induced delayed repolarization known as acquired long QT syndromes (LQTS), which is linked to an increased risk for “torsades de pointes” (TdP) ventricular arrhythmias and sudden cardiac death. Many drugs of different classes and structures have been identified to carry TdP risk. Hence, assessing hERG/IKr blockade of new drug candidates is mandatory in the drug development process according to the regulatory agencies. In contrast, several hERG channel activators have been shown to enhance IKr and shorten the APD and thus might have potential antiarrhythmic effects against pathological LQTS. However, these activators may also be proarrhythmic due to excessive shortening of APD and the ERP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abi-Gerges N, Holkham H, Jones EM, Pollard CE, Valentin JP, Robertson GA (2011) hERG subunit composition determines differential drug sensitivity. Br J Pharmacol 164:419–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelo K, Korolkova YV, Grunnet M, Grishin EV, Pluzhnikov KA, Klaerke DA, Knaus HG, Moller M, Olesen SP (2003) A radiolabeled peptide ligand of the hERG channel, [125I]-BeKm-1. Pflugers Arch 447:55–63

    Article  CAS  PubMed  Google Scholar 

  • Antzelevitch C (2007) Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. Am J Physiol Heart Circ Physiol 293:H2024–H2038

    Article  CAS  PubMed  Google Scholar 

  • Antzelevitch C (2008) Drug-induced spatial dispersion of repolarization. Cardiol J 15:100–121

    PubMed  Google Scholar 

  • Bentzen BH, Bahrke S, Wu K, Larsen AP, Odening KE, Franke G, Storm vańs Gravesande K, Biermann J, Peng X, Koren G, Zehender M, Bode C, Grunnet M, Brunner M (2011) Pharmacological activation of Kv11.1 in transgenic long QT-1 rabbits. J Cardiovasc Pharmacol 57:223–230

    Article  CAS  PubMed  Google Scholar 

  • Bischoff U, Schmidt C, Netzer R, Pongs O (2000) Effects of fluoroquinolones on HERG currents. Eur J Pharmacol 406:341–343

    Article  CAS  PubMed  Google Scholar 

  • Boukens BJ, Christoffels VM, Coronel R, Moorman AF (2009) Developmental basis for electrophysiological heterogeneity in the ventricular and outflow tract myocardium as a substrate for life-threatening ventricular arrhythmias. Circ Res 104:19–31

    Article  CAS  PubMed  Google Scholar 

  • Butler A, Helliwell MV, Zhang Y, Hancox JC, Dempsey CE (2019) An update on the structure of hERG. Front Pharmacol 10:1572

    Article  CAS  PubMed  Google Scholar 

  • Casis O, Olesen SP, Sanguinetti MC (2006) Mechanism of action of a novel human ether-a-go-go-related gene channel activator. Mol Pharmacol 69:658–665

    Article  CAS  PubMed  Google Scholar 

  • Chae YJ, Jeon JH, Lee HJ, Kim IB, Choi JS, Sung KW, Hahn SJ (2014) Escitalopram block of hERG potassium channels. Naunyn Schmiedebergs Arch Pharmacol 387:23–32

    Article  CAS  PubMed  Google Scholar 

  • Chae YJ, Lee HJ, Jeon JH, Kim IB, Choi JS, Sung KW, Hahn SJ (2015) Effects of donepezil on hERG potassium channels. Brain Res 1597:77–85

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Seebohm G, Sanguinetti MC (2002) Position of aromatic residues in the S6 domain, not inactivation, dictates cisapride sensitivity of HERG and eag potassium channels. Proc Natl Acad Sci U S A 99:12461–12466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu PJ, Marcoe KF, Bounds SE, Lin CH, Feng JJ, Lin A, Cheng FC, Crumb WJ, Mitchell R (2004) Validation of a [3H]astemizole binding assay in HEK293 cells expressing HERG K+ channels. J Pharmacol Sci 95:311–319

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Shin TJ, Hwang SH, Lee BH, Kang J, Kim HJ, Jo SH, Choe H, Nah SY (2011) Ginsenoside Rg(3) decelerates hERG K(+) channel deactivation through Ser631 residue interaction. Eur J Pharmacol 663:59–67

    Article  CAS  PubMed  Google Scholar 

  • Chouabe C, Drici MD, Romey G, Barhanin J, Lazdunski M (1998) HERG and KvLQT1/IsK, the cardiac K+ channels involved in long QT syndromes, are targets for calcium channel blockers. Mol Pharmacol 54:695–703

    CAS  PubMed  Google Scholar 

  • Chouabe C, Drici MD, Romey G, Barhanin J (2000) Effects of calcium channel blockers on cloned cardiac K+ channels IKr and IKs. Therapie 55:195–202

    CAS  PubMed  Google Scholar 

  • Claassen S, Zünkler BJ (2005) Comparison of the effects of metoclopramide and domperidone on HERG channels. Pharmacology 74:31–36

    Article  CAS  PubMed  Google Scholar 

  • Crotti L, Taravelli E, Girardengo G, Schwartz PJ (2010) Congenital short QT syndrome. Indian Pacing Electrophysiol J 10:86–95

    PubMed  PubMed Central  Google Scholar 

  • Crumb WJ Jr, Vicente J, Johannesen L, Strauss DG (2016) An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. J Pharmacol Toxicol Methods 81:251–262

    Article  CAS  PubMed  Google Scholar 

  • Danker T, Möller C (2014) Early identification of hERG liability in drug discovery programs by automated patch clamp. Front Pharmacol 5:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz GJ, Daniell K, Leitza ST, Martin RL, Su Z, McDermott JS, Cox BF, Gintant GA (2004) The [3H]dofetilide binding assay is a predictive screening tool for hERG blockade and proarrhythmia: Comparison of intact cell and membrane preparations and effects of altering [K+]o. J Pharmacol Toxicol Methods 50:187–199

    Article  CAS  PubMed  Google Scholar 

  • Dickson CJ, Velez-Vega C, Duca JS (2020) Revealing molecular determinants of hERG blocker and activator binding. J Chem Inf Model 60:192–203

    Article  CAS  PubMed  Google Scholar 

  • Diness TG, Yeh YH, Qi XY, Chartier D, Tsuji Y, Hansen RS, Olesen SP, Grunnet M, Nattel S (2008) Antiarrhythmic properties of a rapid delayed-rectifier current activator in rabbit models of acquired long QT syndrome. Cardiovasc Res 79:61–69

    Article  CAS  PubMed  Google Scholar 

  • Diness JG, Hansen RS, Nissen JD, Jespersen T, Grunnet M (2009) Antiarrhythmic effect of IKr activation in a cellular model of LQT3. Heart Rhythm 6:100–106

    Article  PubMed  Google Scholar 

  • Dong X, Liu Y, Niu H, Wang G, Dong L, Zou A, Wang K (2019) Electrophysiological characterization of a small molecule activator on human ether-a-go-go-related gene (hERG) potassium channel. J Pharmacol Sci 140:284–290

    Article  CAS  PubMed  Google Scholar 

  • Donovan BT, Bandyopadhyay D, Duraiswami C, Nixon CJ, Townsend CY, Martens SF (2018) Discovery and electrophysiological characterization of SKF-32802: a novel hERG agonist found through a large-scale structural similarity search. Eur J Pharmacol 818:306–327

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  Google Scholar 

  • Drolet B, Zhang S, Deschênes D, Rail J, Nadeau S, Zhou Z, January CT, Turgeon J (1999) Droperidol lengthens cardiac repolarization due to block of the rapid component of the delayed rectifier potassium current. J Cardiovasc Electrophysiol 10:1597–1604

    Article  CAS  PubMed  Google Scholar 

  • Drolet B, Rousseau G, Daleau P, Cardinal R, Turgeon J (2000) Domperidone should not be considered a no-risk alternative to cisapride in the treatment of gastrointestinal motility disorders. Circulation 102:1883–1885

    Article  CAS  PubMed  Google Scholar 

  • Duncan RS, Ridley JM, Dempsey CE, Leishman DJ, Leaney JL, Hancox JC, Witchel HJ (2006) Erythromycin block of the HERG K+ channel: accessibility to F656 and Y652. Biochem Biophys Res Commun 341:500–506

    Article  CAS  PubMed  Google Scholar 

  • Duncan G, Firth K, George V, Hoang MD, Staniforth A, Smith G, Denning C (2017) Drug-mediated shortening of action potentials in LQTS2 human induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Dev 26:1695–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fermini B, Hancox JC, Abi-Gerges N, Bridgland-Taylor M, Chaudhary KW, Colatsky T, Correll K, Crumb W, Damiano B, Erdemli G, Gintant G, Imredy J, Koerner J, Kramer J, Levesque P, Li Z, Lindqvist A, Obejero-Paz CA, Rampe D, Sawada K, Strauss DG, Vandenberg JI (2016) A new perspective in the field of cardiac safety testing through the comprehensive in vitro proarrhythmia assay paradigm. J Biomol Screen 21:1–11

    Article  CAS  PubMed  Google Scholar 

  • Fernandez D, Ghanta A, Kauffman GW, Sanguinetti MC (2004) Physicochemical features of the hERG channel drug binding site. J Biol Chem 279:10120–10127

    Article  CAS  PubMed  Google Scholar 

  • Ficker E, Kuryshev YA, Dennis AT, Obejero-Paz C, Wang L, Hawryluk P, Wible BA, Brown AM (2004) Mechanisms of arsenic-induced prolongation of cardiac repolarization. Mol Pharmacol 66:33–44

    Article  CAS  PubMed  Google Scholar 

  • Finlayson K, Pennington AJ, Kelly JS (2001a) [3H]dofetilide binding in SHSY5Y and HEK293 cells expressing a HERG-like K+ channel? Eur J Pharmacol 412:203–212

    Article  CAS  PubMed  Google Scholar 

  • Finlayson K, Turnbull L, January CT, Sharkey J, Kelly JS (2001b) [3H]dofetilide binding to HERG transfected membranes: a potential high throughput preclinical screen. Eur J Pharmacol 430:147–148

    Article  CAS  PubMed  Google Scholar 

  • Garg V, Stary-Weinzinger A, Sachse F, Sanguinetti MC (2011) Molecular determinants for activation of human ether-à-go-go-related gene 1 potassium channels by 3-nitro-n-(4-phenoxyphenyl) benzamide. Mol Pharmacol 80:630–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlach AC, Stoehr SJ, Castle NA (2010) Pharmacological removal of human ether-à-go-go-related gene potassium channel inactivation by 3-nitro-N-(4-phenoxyphenyl) benzamide (ICA-105574). Mol Pharmacol 77:58–68

    Article  CAS  PubMed  Google Scholar 

  • Gessner G, Macianskiene R, Starkus JG, Schönherr R, Heinemann SH (2010) The amiodarone derivative KB130015 activates hERG1 potassium channels via a novel mechanism. Eur J Pharmacol 632:52–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon E, Lozinskaya IM, Lin Z, Semus SF, Blaney FE, Willette RN, Xu X (2008) 2-[2-(3,4-dichloro-phenyl)-2,3-dihydro-1H-isoindol-5-ylamino]-nicotinic acid (PD-307243) causes instantaneous current through human ether-a-go-go-related gene potassium channels. Mol Pharmacol 73:639–651

    Article  CAS  PubMed  Google Scholar 

  • Grunnet M, Hansen RS, Olesen SP (2008) hERG1 channel activators: a new anti-arrhythmic principle. Prog Biophys Mol Biol 98:347–362

    Article  CAS  PubMed  Google Scholar 

  • Gualdani R, Cavalluzzi MM, Tadini-Buoninsegni F, Lentini G (2017) Discovery of a new mexiletine-derived agonist of the hERG K(+) channel. Biophys Chem 229:62–67

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Guthrie H (2005) Automated electrophysiology in the preclinical evaluation of drugs for potential QT prolongation. J Pharmacol Toxicol Methods 52:123–135

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Gang H, Zhang S (2006) Molecular determinants of cocaine block of human ether-á-go-go-related gene potassium channels. J Pharmacol Exp Ther 317:865–874

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Massaeli H, Li W, Xu J, Luo T, Shaw J, Kirshenbaum LA, Zhang S (2007) Identification of IKr and its trafficking disruption induced by probucol in cultured neonatal rat cardiomyocytes. J Pharmacol Exp Ther 321:911–920

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Li X, Shallow H, Xu J, Yang T, Massaeli H, Li W, Sun T, Pierce GN, Zhang S (2011) Involvement of caveolin in probucol-induced reduction in hERG plasma-membrane expression. Mol Pharmacol 79:806–813

    Article  CAS  PubMed  Google Scholar 

  • Han S, Zhang Y, Chen Q, Duan Y, Zheng T, Hu X, Zhang Z, Zhang L (2011) Fluconazole inhibits hERG K(+) channel by direct block and disruption of protein trafficking. Eur J Pharmacol 650:138–144

    Article  CAS  PubMed  Google Scholar 

  • Han SN, Yang SH, Zhang Y, Duan YY, Sun XY, Chen Q, Fan TL, Ye ZK, Huang CZ, Hu XJ, Zhang Z, Zhang LR (2013) Blockage of hERG current and the disruption of trafficking as induced by roxithromycin. Can J Physiol Pharmacol 91:1112–1118

    Article  CAS  PubMed  Google Scholar 

  • Han SN, **g Y, Yang LL, Zhang Z, Zhang LR (2016) Propofol inhibits hERG K(+) channels and enhances the inhibition effects on its mutations in HEK293 cells. Eur J Pharmacol 791:168–178

    Article  CAS  PubMed  Google Scholar 

  • Hancox JC, McPate MJ, El Harchi A, Zhang YH (2008) The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol Ther 119:118–132

    Article  CAS  PubMed  Google Scholar 

  • Hansen RS, Diness TG, Christ T, Demnitz J, Ravens U, Olesen SP, Grunnet M (2006a) Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643). Mol Pharmacol 69:266–277

    Article  CAS  PubMed  Google Scholar 

  • Hansen RS, Diness TG, Christ T, Wettwer E, Ravens U, Olesen SP, Grunnet M (2006b) Biophysical characterization of the new human ether-a-go-go-related gene channel opener NS3623 [N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N'-(3'-trifluoromethylphenyl)urea]. Mol Pharmacol 70:1319–1329

    Article  CAS  PubMed  Google Scholar 

  • Hansen RS, Olesen SP, Rønn LC, Grunnet M (2008) In vivo effects of the IKr agonist NS3623 on cardiac electrophysiology of the guinea pig. J Cardiovasc Pharmacol 52:35–41

    Article  CAS  PubMed  Google Scholar 

  • Helliwell MV, Zhang Y, El Harchi A, Du C, Hancox JC, Dempsey CE (2018) Structural implications of hERG K(+) channel block by a high-affinity minimally structured blocker. J Biol Chem 293:7040–7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Pugsley MK, Fermini B, Curtis MJ, Koerner J, Accardi M, Authier S (2017) Cardiac voltage-gated ion channels in safety pharmacology: review of the landscape leading to the CiPA initiative. J Pharmacol Toxicol Methods 87:11–23

    Article  CAS  PubMed  Google Scholar 

  • Huo J, Guo X, Lu Q, Qiang H, Liu P, Bai L, Huang CL, Zhang Y, Ma A (2017) NS1643 enhances ionic currents in a G604S-WT hERG co-expression system associated with long QT syndrome 2. Clin Exp Pharmacol Physiol 44:1125–1133

    Article  CAS  PubMed  Google Scholar 

  • Hyang-Ae L, Sung-Ae H, Byung** B, Jong-Hak C, Ki-Suk K, Shang-Zhong XJPO (2018) Electrophysiological mechanisms of vandetanib-induced cardiotoxicity: Comparison of action potentials in rabbit Purkinje fibers and pluripotent stem cell-derived cardiomyocytes. PLoS One 13:e0195577

    Article  CAS  Google Scholar 

  • January CT, Riddle JM (1989) Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ Res 64:977–990

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang M, Maslennikov IV, Liu J, Wu DM, Korolkova YV, Arseniev AS, Grishin EV, Tseng GN (2005) Dynamic conformational changes of extracellular S5-P linkers in the hERG channel. J Physiol 569:75–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KA, Garbati N, Zhang H, Large CH (2009) Automated patch clam** using the QPatch. Methods Mol Biol 565:209–223

    Article  CAS  PubMed  Google Scholar 

  • Kamiya K, Nishiyama A, Yasui K, Hojo M, Sanguinetti MC, Kodama I (2001) Short- and long-term effects of amiodarone on the two components of cardiac delayed rectifier K(+) current. Circulation 103:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Kamiya K et al (2006) Molecular determinants of hERG channel block. Mol Pharmacol 69:1709–1716

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Wang L, Cai F, Rampe D (2000) High affinity blockade of the HERG cardiac K(+) channel by the neuroleptic pimozide. Eur J Pharmacol 392:137–140

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Wang L, Chen XL, Triggle DJ, Rampe D (2001) Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG. Mol Pharmacol 59:122–126

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Chen XL, Wang H, Ji J, Cheng H, Incardona J, Reynolds W, Viviani F, Tabart M, Rampe D (2005) Discovery of a small molecule activator of the human ether-a-go-go-related gene (HERG) cardiac K+ channel. Mol Pharmacol 67:827–836

    Article  CAS  PubMed  Google Scholar 

  • Katchman AN, McGroary KA, Kilborn MJ, Kornick CA, Manfredi PL, Woosley RL, Ebert SN (2002) Influence of opioid agonists on cardiac human ether-a-go-go-related gene K(+) currents. J Pharmacol Exp Ther 303:688–694

    Article  CAS  PubMed  Google Scholar 

  • Keating MT, Sanguinetti MC (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104:569–580

    Article  CAS  PubMed  Google Scholar 

  • Kiehn J, Wible B, Ficker E, Taglialatela M, Brown AM (1995) Cloned human inward rectifier K+ channel as a target for class III methanesulfonanilides. Circ Res 77:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Kiehn J, Thomas D, Karle CA, Schöls W, Kübler W (1999) Inhibitory effects of the class III antiarrhythmic drug amiodarone on cloned HERG potassium channels. Naunyn Schmiedebergs Arch Pharmacol 359:212–219

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Kim EJ (2005) The phenothiazine drugs inhibit hERG potassium channels. Drug Chem Toxicol 28:303–313

    Article  CAS  PubMed  Google Scholar 

  • Kim CS, Lee N, Son SJ, Lee KS, Kim HS, Kwak YG, Chae SW, Lee SD, Jeon BH, Park JB (2007) Inhibitory effects of coronary vasodilator papaverine on heterologously-expressed HERG currents in Xenopus oocytes. Acta Pharmacol Sin 28:503–510

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Hong HK, Lee HS, Moh SH, Park JC, Jo SH, Choe H (2008) Papaverine, a vasodilator, blocks the pore of the HERG channel at submicromolar concentration. J Cardiovasc Pharmacol 52:485–493

    Article  CAS  PubMed  Google Scholar 

  • Kirsch GE, Trepakova ES, Brimecombe JC, Sidach SS, Erickson HD, Kochan MC, Shyjka LM, Lacerda AE, Brown AM (2004) Variability in the measurement of hERG potassium channel inhibition: effects of temperature and stimulus pattern. J Pharmacol Toxicol Methods 50:93–101

    Article  CAS  PubMed  Google Scholar 

  • Kodirov SA, Zhuravlev VL, Brachmann J (2019) Prevailing effects of ibutilide on fast delayed rectifier K(+) channel. J Membr Biol 252:609–616

    Article  CAS  PubMed  Google Scholar 

  • Koenig X, Kovar M, Rubi L, Mike AK, Lukacs P, Gawali VS, Todt H, Hilber K, Sandtner W (2013) Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile. Toxicol Appl Pharmacol 273:259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer J, Obejero-Paz CA, Myatt G, Kuryshev YA, Bruening-Wright A, Verducci JS, Brown AM (2013) MICE models: superior to the HERG model in predicting torsade de pointes. Sci Rep 3:2100

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuryshev YA, Brown AM, Wang L, Benedict CR, Rampe D (2000) Interactions of the 5-hydroxytryptamine 3 antagonist class of antiemetic drugs with human cardiac ion channels. J Pharmacol Exp Ther 295:614–620

    CAS  PubMed  Google Scholar 

  • Kuryshev YA, Ficker E, Wang L, Hawryluk P, Dennis AT, Wible BA, Brown AM, Kang J, Chen XL, Sawamura K, Reynolds W, Rampe D (2005) Pentamidine-induced long QT syndrome and block of hERG trafficking. J Pharmacol Exp Ther 312:316–323

    Article  CAS  PubMed  Google Scholar 

  • Kushida S, Ogura T, Komuro I, Nakaya H (2002) Inhibitory effect of the class III antiarrhythmic drug nifekalant on HERG channels: mode of action. Eur J Pharmacol 457:19–27

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Choi SY, Youm JB, Ho WK, Earm YE, Lee CO, Jo SH (2004) Block of HERG human K(+) channel and IKr of guinea pig cardiomyocytes by chlorpromazine. J Cardiovasc Pharmacol 43:706–714

    Article  CAS  PubMed  Google Scholar 

  • Lee HA, Kim KS, Park SJ, Kim EJ (2009) Cellular mechanism of the QT prolongation induced by sulpiride. Int J Toxicol 28:207–212

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Mann SA, Windley MJ, Imtiaz MS, Vandenberg JI, Hill AP (2016) In silico assessment of kinetics and state dependent binding properties of drugs causing acquired LQTS. Prog Biophys Mol Biol 120:89–99

    Article  PubMed  Google Scholar 

  • Lee HA, Hyun SA, Byun B, Chae JH, Kim KS (2018) Electrophysiological mechanisms of vandetanib-induced cardiotoxicity: comparison of action potentials in rabbit Purkinje fibers and pluripotent stem cell-derived cardiomyocytes. PLoS One 13:e0195577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee W, Windley MJ, Perry MD, Vandenberg JI, Hill AP (2019) Protocol-dependent differences in IC50 values measured in human ether-a-go-go-related gene assays occur in a predictable way and can be used to quantify state preference of drug binding. Mol Pharmacol 95:537–550

    Article  CAS  PubMed  Google Scholar 

  • Lees-Miller JP, Duan YJ, Teng GQ, Duff HJ (2000) Molecular determinant of high-affinity dofetilide binding toHERG1 expressed in xenopus oocytes: involvement of S6 sites. Mol Pharmacol 57:367–374

    CAS  PubMed  Google Scholar 

  • Lei M, Wu L, Terrar DA, Huang CL-H (2018) Modernized classification of cardiac antiarrhythmic drugs. Circulation 138:1879–1896

    Article  CAS  PubMed  Google Scholar 

  • Levy RL (1922) Clinical studies of quinidin: IV. The clinical toxicology of quinidin. JAMA 79:1108–1113

    Article  Google Scholar 

  • Lindqvist A (2019) Estimating hERG drug binding using temperature-controlled high-throughput automated patch-clamp. J Pharmacol Toxicol Methods 99:106595

    Article  Google Scholar 

  • Lu HR, Vlaminckx E, Hermans AN, Rohrbacher J, Van Ammel K, Towart R, Pugsley M, Gallacher DJ (2008) Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B guidelines. Br J Pharmacol 154:1427–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo T, Luo A, Liu M, Liu X (2008) Inhibition of the HERG channel by droperidol depends on channel gating and involves the S6 residue F656. Anesth Analg 106:1161–1170. table of contents

    Article  CAS  PubMed  Google Scholar 

  • Mannikko R, Bridgland-Taylor MH, Pye H, Swallow S, Abi-Gerges N, Morton MJ, Pollard CE (2015) Pharmacological and electrophysiological characterization of AZSMO-23, an activator of the hERG K(+) channel. Br J Pharmacol 172:3112–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin RL, Su Z, Limberis JT, Palmatier JD, Cowart MD, Cox BF, Gintant GA (2006) In vitro preclinical cardiac assessment of tolterodine and terodiline: multiple factors predict the clinical experience. J Cardiovasc Pharmacol 48:199–206

    Article  CAS  PubMed  Google Scholar 

  • Maruyama M, Lin SF, **e Y, Chua SK, Joung B, Han S, Shinohara T, Shen MJ, Qu Z, Weiss JN, Chen PS (2011) Genesis of phase 3 early afterdepolarizations and triggered activity in acquired long-QT syndrome. Circ Arrhythm Electrophysiol 4:103–111

    Article  PubMed  Google Scholar 

  • McNally BA, Pendon ZD, Trudeau MC (2017) hERG1a and hERG1b potassium channel subunits directly interact and preferentially form heteromeric channels. J Biol Chem 292:21548–21557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Shi C, Li L, Du Y, Xu Y (2013) Compound ICA-105574 prevents arrhythmias induced by cardiac delayed repolarization. Eur J Pharmacol 718:87–97

    Article  CAS  PubMed  Google Scholar 

  • Milnes JT, Witchel HJ, Leaney JL, Leishman DJ, Hancox JC (2006) hERG K+ channel blockade by the antipsychotic drug thioridazine: an obligatory role for the S6 helix residue F656. Biochem Biophys Res Commun 351:273–280

    Article  CAS  PubMed  Google Scholar 

  • Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC (2000) A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci 97:12329–12333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammad S, Zhou Z, Gong Q, January CT (1997) Blockage of the HERG human cardiac K+ channel by the gastrointestinal prokinetic agent cisapride. Am J Physiol 273:H2534–H2538

    CAS  PubMed  Google Scholar 

  • Numaguchi H, Mullins FM, Johnson JP Jr, Johns DC, Po SS, Yang IC, Tomaselli GF, Balser JR (2000) Probing the interaction between inactivation gating and Dd-sotalol block of HERG. Circ Res 87:1012–1018

    Article  CAS  PubMed  Google Scholar 

  • Paul AA, Witchel HJ, Hancox JC (2001) Inhibition of HERG potassium channel current by the class 1a antiarrhythmic agent disopyramide. Biochem Biophys Res Commun 280:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Paul AA, Witchel HJ, Hancox JC (2002) Inhibition of the current of heterologously expressed HERG potassium channels by flecainide and comparison with quinidine, propafenone and lignocaine. Br J Pharmacol 136:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearlstein RA, MacCannell KA, Erdemli G, Yeola S, Helmlinger G, Hu QY, Farid R, Egan W, Whitebread S, Springer C, Beck J, Wang HR, Maciejewski M, Urban L, Duca JS (2016) Implications of dynamic occupancy, binding kinetics, and channel gating kinetics for hERG blocker safety assessment and mitigation. Curr Top Med Chem 16:1792–1818

    Article  CAS  PubMed  Google Scholar 

  • Peitersen T, Grunnet M, Benson AP, Holden AV, Holstein-Rathlou NH, Olesen SP (2008) Computational analysis of the effects of the hERG channel opener NS1643 in a human ventricular cell model. Heart Rhythm 5:734–741

    Article  PubMed  Google Scholar 

  • Perry M, de Groot MJ, Helliwell R, Leishman D, Tristani-Firouzi M, Sanguinetti MC, Mitcheson J (2004) Structural determinants of HERG channel block by clofilium and ibutilide. Mol Pharmacol 66:240–249

    Article  CAS  PubMed  Google Scholar 

  • Perry M, Sachse FB, Sanguinetti MC (2007) Structural basis of action for a human ether-a-go-go-related gene 1 potassium channel activator. Proc Natl Acad Sci U S A 104:13827–13832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry M, Sachse FB, Abbruzzese J, Sanguinetti MC (2009) PD-118057 contacts the pore helix of hERG1 channels to attenuate inactivation and enhance K+ conductance. Proc Natl Acad Sci U S A 106:20075–20080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry M, Sanguinetti M, Mitcheson J (2010) Revealing the structural basis of action of hERG potassium channel activators and blockers. J Physiol 588:3157–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry MD, Ng CA, Mangala MM, Ng TYM, Hines AD, Liang W, Xu MJO, Hill AP, Vandenberg JI (2020) Pharmacological activation of IKr in models of long QT Type 2 risks overcorrection of repolarization. Cardiovasc Res 116:1434–1445

    Article  CAS  PubMed  Google Scholar 

  • Piper DR, Varghese A, Sanguinetti MC, Tristani-Firouzi M (2003) Gating currents associated with intramembrane charge displacement in HERG potassium channels. Proc Natl Acad Sci U S A 100(18):10534–10539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponti FD (2008) Pharmacological and regulatory aspects of QT prolongation. Wiley-VCH Verlag GmbH & Co, KGaA

    Book  Google Scholar 

  • Potet F, Bouyssou T, Escande D, Baro I (2001) Gastrointestinal prokinetic drugs have different affinity for the human cardiac human ether-a-gogo K(+) channel. J Pharmacol Exp Ther 299:1007–1012

    CAS  PubMed  Google Scholar 

  • Qile M, Beekman HDM, Sprenkeler DJ, Houtman MJC, van Ham WB, Stary-Weinzinger A, Beyl S, Hering S, van den Berg DJ, de Lange ECM, Heitman LH, IJzerman AP, Vos MA, van der MAG H (2019) LUF7244, an allosteric modulator/activator of K(v) 11.1 channels, counteracts dofetilide-induced torsades de pointes arrhythmia in the chronic atrioventricular block dog model. Br J Pharmacol 176:3871–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu B, Wang Y, Li C, Guo H, Xu Y (2019) Utility of the JT peak interval and the JT area in determining the proarrhythmic potential of QT-shortening agents. J Cardiovasc Pharmacol Ther 24:160–171

    Article  CAS  PubMed  Google Scholar 

  • Raab CE, Butcher JW, Connolly TM, Karczewski J, Yu NX, Staskiewicz SJ, Liverton N, Dean DC, Melillo DG (2006) Synthesis of the first sulfur-35-labeled hERG radioligand. Bioorg Med Chem Lett 16:1692–1695

    Article  CAS  PubMed  Google Scholar 

  • Rajamani S, Eckhardt LL, Valdivia CR, Klemens CA, Gillman BM, Anderson CL, Holzem KM, Delisle BP, Anson BD, Makielski JC, January CT (2006) Drug-induced long QT syndrome: hERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine. Br J Pharmacol 149:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampe D, Brown AM (2013) A history of the role of the hERG channel in cardiac risk assessment. J Pharmacol Toxicol Methods 68:13–22

    Article  CAS  PubMed  Google Scholar 

  • Rampe D, Roy ML, Dennis A, Brown AM (1997) A mechanism for the proarrhythmic effects of cisapride (Propulsid): high affinity blockade of the human cardiac potassium channel HERG. FEBS Lett 417:28–32

    Article  CAS  PubMed  Google Scholar 

  • Rampe D, Murawsky MK, Grau J, Lewis EW (1998) The antipsychotic agent sertindole is a high affinity antagonist of the human cardiac potassium channel HERG. J Pharmacol Exp Ther 286:788–793

    CAS  PubMed  Google Scholar 

  • Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58:32–45

    Article  CAS  PubMed  Google Scholar 

  • Rezazadeh S, Hesketh JC, Fedida D (2004) Rb+ flux through hERG channels affects the potency of channel blocking drugs: correlation with data obtained using a high-throughput Rb+ efflux assay. J Biomol Screen 9:588–597

    Article  CAS  PubMed  Google Scholar 

  • Ridley JM, Milnes JT, Witchel HJ, Hancox JC (2004) High affinity HERG K(+) channel blockade by the antiarrhythmic agent dronedarone: resistance to mutations of the S6 residues Y652 and F656. Biochem Biophys Res Commun 325:883–891

    Article  CAS  PubMed  Google Scholar 

  • Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N (2014) Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J 167:292–300

    Article  PubMed  Google Scholar 

  • Sala L, Yu Z, Ward-van Oostwaard D, van Veldhoven JP, Moretti A, Laugwitz KL, Mummery CL, IJzerman AP, Bellin M (2016) A new hERG allosteric modulator rescues genetic and drug-induced long-QT syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Mol Med 8:1065–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sale H, Wang J, O'Hara TJ, Tester DJ, Phartiyal P, He JQ, Rudy Y, Ackerman MJ, Robertson GA (2008) Physiological properties of hERG 1a/1b heteromeric currents and a hERG 1b-specific mutation associated with Long-QT syndrome. Circ Res 103:e81–e95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sale H, Roy S, Warrier J, Thangathirupathy S, Vadari Y, Gopal SK, Krishnamurthy P, Ramarao M (2017) Modulation of K(v) 11.1 (hERG) channels by 5-(((1H-indazol-5-yl)oxy)methyl)-N-(4-(trifluoromethoxy)phenyl)pyrimidin-2-amine (ITP-2), a novel small molecule activator. Br J Pharmacol 174:2484–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Chapula JA, Navarro-Polanco RA, Culberson C, Chen J, Sanguinetti MC (2002) Molecular determinants of voltage-dependent human ether-a-go-go related gene (HERG) K+ channel block. J Biol Chem 277:23587–23595

    Article  PubMed  CAS  Google Scholar 

  • Sănchez-Chapula JA, Ferrer T, Navarro-Polanco RA, Sanguinetti MC (2003) Voltage-dependent profile of human ether-a-go-go-related gene channel block is influenced by a single residue in the S6 transmembrane domain. Mol Pharmacol 63:1051–1058

    Article  PubMed  Google Scholar 

  • Sanguinetti MC (2014) HERG1 channel agonists and cardiac arrhythmia. Curr Opin Pharmacol 15:22–27

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Mitcheson JS (2005) Predicting drug-hERG channel interactions that cause acquired long QT syndrome. Trends Pharmacol Sci 26:119–124

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  CAS  PubMed  Google Scholar 

  • Schewe M, Sun H, Mert Ü, Mackenzie A, Pike ACW, Schulz F, Constantin C, Vowinkel KS, Conrad LJ, Kiper AK, Gonzalez W, Musinszki M, Tegtmeier M, Pryde DC, Belabed H, Nazare M, de Groot BL, Decher N, Fakler B, Carpenter EP, Tucker SJ, Baukrowitz T (2019) A pharmacological master key mechanism that unlocks the selectivity filter gate in K(+) channels. Science 363:875–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt N, Grunnet M, Olesen SP (2014) Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 94:609–653

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Crotti L, Insolia R (2012) Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol 5:868–877

    Article  PubMed  PubMed Central  Google Scholar 

  • Selzer A, Wray HWJC (1964) Quinidine syncope. Paroxysmal ventricular fibrillation occurring during treatment of chronic atrial arrhythmias. Circulation 30:17–26

    Article  CAS  PubMed  Google Scholar 

  • Shealy RT, Murphy AD, Ramarathnam R, Jakobsson E, Subramaniam S (2003) Sequence-function analysis of the K+-selective family of ion channels using a comprehensive alignment and the KcsA channel structure. Biophys J 84:2929–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi YP, Pang Z, Venkateshappa R, Gunawan M, Kemp J, Truong E, Chang C, Lin E, Shafaattalab S, Faizi S, Rayani K, Tibbits GF, Claydon VE, Claydon TW (2020) The hERG channel activator, RPR260243, enhances protective I(Kr) current early in the refractory period reducing arrhythmogenicity in zebrafish hearts. Am J Physiol Heart Circ Physiol 319:H251–h261

    Article  CAS  PubMed  Google Scholar 

  • Shuba YM, Degtiar VE, Osipenko VN, Naidenov VG, Woosley RL (2001) Testosterone-mediated modulation of HERG blockade by proarrhythmic agents. Biochem Pharmacol 62:41–49

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Vaughan Williams EM (1970) A third class of anti-arrhythmic action. Effects on atrial and ventricular intracellular potentials, and other pharmacological actions on cardiac muscle, of MJ 1999 and AH 3474. Br J Pharmacol 39:675–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PL, Baukrowitz T, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379:833–836

    Article  CAS  PubMed  Google Scholar 

  • Stanat SJ, Carlton CG, Crumb WJ Jr, Agrawal KC, Clarkson CW (2003) Characterization of the inhibitory effects of erythromycin and clarithromycin on the HERG potassium channel. Mol Cell Biochem 254:1–7

    Article  CAS  PubMed  Google Scholar 

  • Stansfeld PJ, Gedeck P, Gosling M, Cox B, Mitcheson JS, Sutcliffe MJ (2007) Drug block of the hERG potassium channel: insight from modeling. Proteins 68:568–580

    Article  CAS  PubMed  Google Scholar 

  • Stork D, Timin EN, Berjukow S, Huber C, Hohaus A, Auer M, Hering S (2007) State dependent dissociation of HERG channel inhibitors. Br J Pharmacol 151:1368–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Z, Martin R, Cox BF, Gintant G (2004) Mesoridazine: an open-channel blocker of human ether-a-go-go-related gene K+ channel. J Mol Cell Cardiol 36:151–160

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Limberis J, Souers A, Kym P, Mikhail A, Houseman K, Diaz G, Liu X, Martin RL, Cox BF, Gintant GA (2009) Electrophysiologic characterization of a novel hERG channel activator. Biochem Pharmacol 77:1383–1390

    Article  CAS  PubMed  Google Scholar 

  • Subbiah RN, Clarke CE, Smith DJ, Zhao J, Campbell TJ, Vandenberg JI (2004) Molecular basis of slow activation of the human ether-a-go-go related gene potassium channel. J Physiol 558:417–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suessbrich H, Waldegger S, Lang F, Busch AE (1996) Blockade of HERG channels expressed in Xenopus oocytes by the histamine receptor antagonists terfenadine and astemizole. FEBS Lett 385:77–80

    Article  CAS  PubMed  Google Scholar 

  • Suessbrich H, Schönherr R, Heinemann SH, Attali B, Lang F, Busch AE (1997) The inhibitory effect of the antipsychotic drug haloperidol on HERG potassium channels expressed in Xenopus oocytes. Br J Pharmacol 120:968–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabó G, Farkas V, Grunnet M, Mohácsi A, Nánási PP (2011) Enhanced repolarization capacity: new potential antiarrhythmic strategy based on HERG channel activation. Curr Med Chem 18:3607–3621

    Article  PubMed  Google Scholar 

  • Takemasa H, Nagatomo T, Abe H, Kawakami K, Igarashi T, Tsurugi T, Kabashima N, Tamura M, Okazaki M, Delisle BP, January CT, Otsuji Y (2008) Coexistence of hERG current block and disruption of protein trafficking in ketoconazole-induced long QT syndrome. Br J Pharmacol 153:439–447

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Takahashi Y, Hamaguchi S, Iida-Tanaka N, Oka T, Nishio M, Ohtsuki A, Namekata I (2014) Effect of terfenadine and pentamidine on the HERG channel and its intracellular trafficking: combined analysis with automated voltage clamp and confocal microscopy. Biol Pharm Bull 37:1826–1830

    Article  CAS  PubMed  Google Scholar 

  • Terstappen GC (1999) Functional analysis of native and recombinant ion channels using a high-capacity nonradioactive rubidium efflux assay. Anal Biochem 272:149–155

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Kathofer S, Zhang W, Wu K, Wimmer AB, Zitron E, Kreye VA, Katus HA, Schoels W, Karle CA, Kiehn J (2003a) Acute effects of dronedarone on both components of the cardiac delayed rectifier K+ current, HERG and KvLQT1/minK potassium channels. Br J Pharmacol 140:996–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas D, Wu K, Kathöfer S, Katus HA, Schoels W, Kiehn J, Karle CA (2003b) The antipsychotic drug chlorpromazine inhibits HERG potassium channels. Br J Pharmacol 139:567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurner P, Stary-Weinzinger A, Gafar H, Gawali VS, Kudlacek O, Zezula J, Hilber K, Boehm S, Sandtner W, Koenig X (2014) Mechanism of hERG channel block by the psychoactive indole alkaloid ibogaine. J Pharmacol Exp Ther 348:346–358

    Article  PubMed  Google Scholar 

  • Tie H, Walker BD, Singleton CB, Valenzuela SM, Bursill JA, Wyse KR, Breit SN, Campbell TJ (2000) Inhibition of HERG potassium channels by the antimalarial agent halofantrine. Br J Pharmacol 130:1967–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titus SA, Beacham D, Shahane SA, Southall N, **a M, Huang R, Hooten E, Zhao Y, Shou L, Austin CP, Zheng W (2009) A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel. Anal Biochem 394:30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traebert M, Dumotier B, Meister L, Hoffmann P, Dominguez-Estevez M, Suter W (2004) Inhibition of hERG K+ currents by antimalarial drugs in stably transfected HEK293 cells. Eur J Pharmacol 484:41–48

    Article  CAS  PubMed  Google Scholar 

  • van Noord C, Sturkenboom MC, Straus SM, Witteman JC, Stricker BH (2011) Non-cardiovascular drugs that inhibit hERG-encoded potassium channels and risk of sudden cardiac death. Heart 97:215–220

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg JI, Walker BD, Campbell TJ (2001) HERG K+ channels: friend and foe. Trends Pharmacol Sci 22:240–246

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg JI, Torres AM, Campbell TJ, Kuchel PW (2004) The HERG K+ channel: progress in understanding the molecular basis of its unusual gating kinetics. Eur Biophys J 33:89–97

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP (2012) hERG K(+) channels: structure, function, and clinical significance. Physiol Rev 92:1393–1478

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg JI, Perozo E, Allen TW (2017) Towards a structural view of drug binding to hERG K(+) channels. Trends Pharmacol Sci 38:899–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volberg WA, Koci BJ, Su W, Lin J, Zhou J (2002) Blockade of human cardiac potassium channel human ether-a-go-go-related gene (HERG) by macrolide antibiotics. J Pharmacol Exp Ther 302:320–327

    Article  CAS  PubMed  Google Scholar 

  • Wacker S, Noskov SY, Perissinotti LL (2017) Computational models for understanding of structure, function and pharmacology of the cardiac potassium channel Kv11.1 (hERG). Curr Top Med Chem 17:2681–2702

    Article  CAS  PubMed  Google Scholar 

  • Walker BD, Singleton CB, Bursill JA, Wyse KR, Valenzuela SM, Qiu MR, Breit SN, Campbell TJ (1999) Inhibition of the human ether-a-go-go-related gene (HERG) potassium channel by cisapride: affinity for open and inactivated states. Br J Pharmacol 128:444–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis R, Benson C, Darpo B, Gintant G, Kanda Y, Prasad K, Strauss DG, Valentin JP (2018) CiPA challenges and opportunities from a non-clinical, clinical and regulatory perspectives. An overview of the safety pharmacology scientific discussion. J Pharmacol Toxicol Methods 93:15–25

    Article  CAS  PubMed  Google Scholar 

  • Wang W, MacKinnon R (2017) Cryo-EM structure of the open human ether-à-go-go-related K(+) channel hERG. Cell 169:422–430.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver CD, Harden D, Dworetzky SI, Robertson B, Knox RJ (2004) A thallium-sensitive, fluorescence-based assay for detecting and characterizing potassium channel modulators in mammalian cells. J Biomol Screen 9:671–677

    Article  CAS  PubMed  Google Scholar 

  • Windley MJ, Abi-Gerges N, Fermini B, Hancox JC, Vandenberg JI, Hill AP (2017) Measuring kinetics and potency of hERG block for CiPA. J Pharmacol Toxicol Methods 87:99–107

    Article  CAS  PubMed  Google Scholar 

  • Winters SL, Schweitzer P, Kupersmith J, Gomes JA (1985) Verapamil-induced polymorphous ventricular tachycardia. J Am Coll Cardiol 6:257–259

    Article  CAS  PubMed  Google Scholar 

  • Wit AL (1990) Cellular electrophysiologic mechanisms of cardiac arrhythmias. Cardiol Clin 8:393–409

    Article  CAS  PubMed  Google Scholar 

  • Witchel HJ, Pabbathi VK, Hofmann G, Paul AA, Hancox JC (2002) Inhibitory actions of the selective serotonin re-uptake inhibitor citalopram on HERG and ventricular L-type calcium currents. FEBS Lett 512:59–66

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Recanatini M, Roberti M, Tseng GN (2008) Probing the binding sites and mechanisms of action of two human ether-a-go-go-related gene channel activators, 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643) and 2-[2-(3,4-dichloro-phenyl)-2,3-dihydro-1H-isoindol-5-ylamino]-nicotinic acid (PD307243). Mol Pharmacol 73:1709–1721

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Hatakeyama N, Malykhina AP, Yamazaki M, Momose Y, Akbarali HI (2006) The effects of sevoflurane and propofol on QT interval and heterologously expressed human ether-a-go-go related gene currents in Xenopus oocytes. Anesth Analg 102:98–103

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Snyders D, Roden DM (2001) Drug block of I(kr): model systems and relevance to human arrhythmias. J Cardiovasc Pharmacol 38:737–744

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Prinsen JK, Bersell KR, Shen W, Yermalitskaya L, Sidorova T, Luis PB, Hall L, Zhang W, Du L, Milne G, Tucker P, George AL Jr, Campbell CM, Pickett RA, Shaffer CM, Chopra N, Yang T, Knollmann BC, Roden DM, Murray KT (2017) Azithromycin causes a novel proarrhythmic syndrome. Circ Arrhythm Electrophysiol 10(4):e003560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zangerl-Plessl EM, Berger M, Drescher M, Chen Y, Wu W, Maulide N, Sanguinetti M, Stary-Weinzinger A (2020) Toward a structural view of hERG activation by the small-molecule activator ICA-105574. J Chem Inf Model 60:360–371

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Lozinskaya IM, Lin Z, Willette RN, Brooks DP, Xu X (2006) Mallotoxin is a novel human ether-a-go-go-related gene (hERG) potassium channel activator. J Pharmacol Exp Ther 319:957–962

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hancox JC (2004) In silico study of action potential and QT interval shortening due to loss of inactivation of the cardiac rapid delayed rectifier potassium current. Biochem Biophys Res Commun 322:693–699

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhou Z, Gong Q, Makielski JC, January CT (1999) Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 84:989–998

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Rajamani S, Chen Y, Gong Q, Rong Y, Zhou Z, Ruoho A, January CT (2001) Cocaine blocks HERG, but not KvLQT1+minK, potassium channels. Mol Pharmacol 59:1069–1076

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zou B, Yu H, Moretti A, Wang X, Yan W, Babcock JJ, Bellin M, McManus OB, Tomaselli G, Nan F, Laugwitz KL, Li M (2012) Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel. Proc Natl Acad Sci U S A 109:11866–11871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhi D, Feng PF, Sun JL, Guo F, Zhang R, Zhao X, Li BX (2015) The enhancement of cardiac toxicity by concomitant administration of Berberine and macrolides. Eur J Pharm Sci 76:149–155

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT (1998) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Vorperian VR, Gong Q, Zhang S, January CT (1999) Block of HERG potassium channels by the antihistamine astemizole and its metabolites desmethylastemizole and norastemizole. J Cardiovasc Electrophysiol 10:836–843

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Augelli-Szafran CE, Bradley JA, Chen X, Koci BJ, Volberg WA, Sun Z, Cordes JS (2005) Novel potent human ether-a-go-go-related gene (hERG) potassium channel enhancers and their in vitro antiarrhythmic activity. Mol Pharmacol 68:876–884

    Article  CAS  PubMed  Google Scholar 

  • Zhou PZ, Babcock J, Liu LQ, Li M, Gao ZB (2011) Activation of human ether-a-go-go related gene (hERG) potassium channels by small molecules. Acta Pharmacol Sin 32:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Su, S., Sun, J., Wang, Y., Xu, Y. (2021). Cardiac hERG K+ Channel as Safety and Pharmacological Target. In: Gamper, N., Wang, K. (eds) Pharmacology of Potassium Channels. Handbook of Experimental Pharmacology, vol 267. Springer, Cham. https://doi.org/10.1007/164_2021_455

Download citation

Publish with us

Policies and ethics

Navigation