Acoustic Metamaterials for Noise Control Applications

  • Living reference work entry
  • First Online:
Handbook of Vibroacoustics, Noise and Harshness

Abstract

Low-frequency noise control is always a challenging issue for an NVH (Noise, Vibration and Harshness) engineer. Acoustic metamaterials are a newly invented class of materials that exploit interesting wave phenomena to control and manipulate sound waves beyond the capability of naturally occurring materials. They are finding increasing use in the field of low-frequency noise control, acoustic super lensing, wave guiding, frequency filtering, and acoustic subwavelength imaging. Space coiling metamaterials and sonic crystals are among the most widely used metamaterials for noise control. They display interesting wave manipulations that lead to extraordinary phenomena such as extreme positive, negative, or zero values of refractive index, wave speed and bulk elastic properties, Fabry-Perot type resonances, spectral band gap formation, local resonances, and Bragg’s scattering. Advancements are ongoing to improve their performance and reduce their limitations. This chapter describes these acoustic metamaterials, particularly, in the context of noise control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alagoz S, Baykant Alagoz B (2013) Sonic crystal acoustic switch device. J Acoust Soc Am 133(6):EL485–EL490

    Article  Google Scholar 

  • Alagoz S, Kaya OA, Alagoz BB (2009) Frequency-controlled wave focusing by a sonic crystal lens. Appl Acoust 70(11–12):1400–1405

    Article  Google Scholar 

  • Aydin K, Bulu I, Ozbay E (2007) Subwavelength resolution with a negative-index metamaterial superlens. Appl Phys Lett 90(25)

    Google Scholar 

  • Cao L, Fu Q, Si Y, Ding B, Yu J (2018) Porous materials for sound absorption. Compos Commun 10(April):25–35

    Article  Google Scholar 

  • Cavalieri T, Cebrecos A, Groby JP, Chaufour C, Romero-GarcĂ­a V (2019) Three-dimensional multiresonant lossy sonic crystal for broadband acoustic attenuation: application to train noise reduction. Appl Acoust 146:1–8

    Article  Google Scholar 

  • Chaufour C (2020) Sonic crystal noise barrier design to reduce railway noise emissions. Forum Acust

    Google Scholar 

  • Chen S et al (2019) Engineering coiling-up space metasurfaces for broadband low-frequency acoustic absorption. Phys Status Solidi – Rapid Res Lett 13(12):1–6

    Article  Google Scholar 

  • Chen JS et al (2023) Ultrathin arch-like labyrinthine acoustic metasurface for low-frequency sound absorption. Appl Acoust 202:109142

    Article  Google Scholar 

  • Crocker MJ, Bernhard RJ, Lafayette W, Brinkmann K (2007) Handbook of noise editorial board, p 1569

    Google Scholar 

  • Dimitrijević SM, GarcĂ­a-Chocano VM, Cervera F, Roth E, Sánchez-Dehesa J (2019) Sound insulation and reflection properties of sonic crystal barrier based on micro-perforated cylinders. Materials (Basel) 12(7)

    Google Scholar 

  • do Almeida GN, Vergara EF, Barbosa LR, Brum R (2021) Low-frequency sound absorption of a metamaterial with symmetrical-coiled-up spaces. Appl Acoust 172:107593

    Article  Google Scholar 

  • Fredianelli L, Del Pizzo A, Licitra G (2019) Recent developments in sonic crystals as barriers for road traffic noise mitigation. Environ MDPI 6(2):1–19

    Google Scholar 

  • Frenzel T, David Brehm J, BĂĽckmann T, Schittny R, Kadic M, Wegener M (2013) Three-dimensional labyrinthine acoustic metamaterials. Appl Phys Lett 103(6):1–6

    Article  Google Scholar 

  • Gupta A (2014) A review on sonic crystal, its applications and numerical analysis techniques. Acoust Phys 60(2):223–234

    Article  Google Scholar 

  • He C, Zhao H, Wei R, Wu B (2010) Existence of complete band gaps in 2D steel-water phononic crystal with square lattice. Front Mech Eng China 5(4):450–454

    Article  Google Scholar 

  • Kaina N, Lemoult F, Fink M, Lerosey G (2015) Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525(7567):77–81

    Article  Google Scholar 

  • Kamrul VH et al (2021) Proof of concept for a lightweight panel with enhanced sound absorption exploiting rainbow labyrinthine metamaterials. ar**v Prepr. ar**v2110.05026

    Google Scholar 

  • Kittel C (1957) Introduction to solid state physics. Physics Today 6(1):83

    Google Scholar 

  • Koo S, Cho C, Jeong JH, Park N (2016) Acoustic omni meta-atom for decoupled access to all octants of a wave parameter space. Nat Commun 7:1–7

    Article  Google Scholar 

  • Krushynska AO, Bosia F, Pugno NM (2018) Labyrinthine acoustic metamaterials with space-coiling channels for low-frequency sound control. Acta Acust United Acust 104(2):200–210

    Article  Google Scholar 

  • Kumar S, Lee HP (2020) Labyrinthine acoustic metastructures enabling broadband sound absorption and ventilation. Appl Phys Lett 116(13)

    Google Scholar 

  • Kumar N, Pal S (2019) Low frequency and wide band gap metamaterial with divergent shaped star units: numerical and experimental investigations. Appl Phys Lett 115(25)

    Google Scholar 

  • Kushwaha MS (2016) The phononic crystals: an unending quest for tailoring acoustics. Mod Phys Lett B 30(19):1630004

    Article  Google Scholar 

  • Kut D (1970) Sound attenuation. Warm Air Heat 378(November):177–202

    Article  Google Scholar 

  • Laureti S, Hutchins DA, Davis LAJ, Leigh SJ, Ricci M (2016) High-resolution acoustic imaging at low frequencies using 3D-printed metamaterials. AIP Adv 6(12)

    Google Scholar 

  • Le Pevelen DD (2010) Small molecule X-ray crystallography, theory and workflow. Encycl Spectrosc Spectrom:2559–2576

    Google Scholar 

  • Li Y, Liang B, Tao X, Zhu XF, Zou XY, Cheng JC (2012) Acoustic focusing by coiling up space. Appl Phys Lett 101(23)

    Google Scholar 

  • Li Y, Liang B, Zou XY, Cheng JC (2013) Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space. Appl Phys Lett 103(6)

    Google Scholar 

  • Liang Z, Li J (2012) Extreme acoustic metamaterial by coiling up space. Phys Rev Lett 108(11):1–4

    Article  Google Scholar 

  • Liu X, Duan M, Liu M, **n F, Zhang C (2021) Acoustic labyrinthine porous metamaterials for subwavelength low-frequency sound absorption. J Appl Phys 129(19):1–8

    Article  Google Scholar 

  • Ma F, Huang Z, Liu C, Wu JH (2022) Acoustic focusing and imaging via phononic crystal and acoustic metamaterials. J Appl Phys 131(1)

    Google Scholar 

  • Man X, Luo Z, Liu J, **a B (2019) Hilbert fractal acoustic metamaterials with negative mass density and bulk modulus on subwavelength scale. Mater Des 180:107911

    Article  Google Scholar 

  • MartĂ­nez-Duart JM, MartĂ­n-Palma RJ, AgullĂł-Rueda F (2006) Chapter 2 – survey of solid state physics. In: MartĂ­nez-Duart JM, MartĂ­n-Palma RJ, AgullĂł-Rueda F (eds) European materials research society series. Elsevier, Amsterdam, pp 21–53

    Google Scholar 

  • Miyashita T (2005) Sonic crystals and sonic wave-guides. Meas Sci Technol 16(5):R47

    Article  Google Scholar 

  • Munday JN, Bennett CB, Robertson WM (2002) Band gaps and defect modes in periodically structured waveguides. J Acoust Soc Am 112(4):1353–1358

    Article  Google Scholar 

  • Pavan G, Singh S (2022) Near-perfect sound absorptions in low-frequencies by varying compositions of porous labyrinthine acoustic metamaterial. Appl Acoust 198:108974

    Article  Google Scholar 

  • PeirĂł-Torres MP, Redondo J, Bravo JM, PĂ©rez JVS (2016) Open noise barriers based on sonic crystals. Advances in noise control in transport infrastructures. Transp Res Procedia 18(June):392–398

    Article  Google Scholar 

  • Popa BI, Shinde D, Konneker A, Cummer SA (2015) Active acoustic metamaterials reconfigurable in real time. Phys Rev B – Condens Matter Mater Phys 91(22):1–5

    Article  Google Scholar 

  • Radosz J (2019) Acoustic performance of noise barrier based on sonic crystals with resonant elements. Appl Acoust 155:492–499

    Article  Google Scholar 

  • Sheng P, Zhang XX, Liu Z, Chan CT (2003) Locally resonant sonic materials. Phys B Condens Matter 338(1–4):201–205

    Article  Google Scholar 

  • Singh S (n.d.) (432) Acoustic materials and metamaterials – YouTube

    Google Scholar 

  • Sun P et al (2023) Sound absorption of space-coiled metamaterials with soft walls. Int J Mech Sci:108696

    Google Scholar 

  • Veselago VG (1968) c dt for a plane monochromatic wave, in which all quantities are proportional to e^kz – wt^t. Physics (College Park Md) 10(4)

    Google Scholar 

  • Veselago VG (1966) On properties of substance with simultaneously negative permittivity (ε) and permeability (ÎĽ). Fiz Tverd Tela 8:3571–3573

    Google Scholar 

  • Vilamil RH (2012) Acoustic properties of microperforated panels and their optimization by simulated annealing. PhD

    Google Scholar 

  • Walker EL, Reyes-Contreras D, ** Y, Neogi A (2019) Tunable hybrid phononic crystal lens using thermo-acoustic polymers. ACS Omega 4(15):16585–16590

    Article  Google Scholar 

  • Wang Y et al (2018) A tunable sound-absorbing metamaterial based on coiled-up space. J Appl Phys 123(18):1–7

    Article  Google Scholar 

  • Wu F, **ao Y, Di Y, Zhao H, Wang Y, Wen J (2019) Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels. Appl Phys Lett 114(15)

    Google Scholar 

  • **e Y, Popa BI, Zigoneanu L, Cummer SA (2013) Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys Rev Lett 110(17):1–4

    Article  Google Scholar 

  • xin Gao Y et al (2020) Broadband thin sound absorber based on hybrid labyrinthine metastructures with optimally designed parameters. Sci Rep 10(1)

    Google Scholar 

  • Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059

    Article  Google Scholar 

  • Zangeneh-Nejad F, Fleury R (2019) Active times for acoustic metamaterials. Rev Phys 4(November 2018):100031

    Article  Google Scholar 

  • Zhang X, Liu Z (2004) Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl Phys Lett 85(2):341–343

    Article  Google Scholar 

  • Zhang S, Yin L, Fang N (2009) Focusing ultrasound with an acoustic metamaterial network. Phys Rev Lett 102(19):1–4

    Article  Google Scholar 

  • Zhao X, Liu G, Zhang C, **a D, Lu Z (2018) Fractal acoustic metamaterials for transformer noise reduction. Appl Phys Lett 113(7):1–6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Singh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh, S., Pavan, G., Chalurkar, C. (2024). Acoustic Metamaterials for Noise Control Applications. In: Garg, N., Gautam, C., Rab, S., Wan, M., Agarwal, R., Yadav, S. (eds) Handbook of Vibroacoustics, Noise and Harshness. Springer, Singapore. https://doi.org/10.1007/978-981-99-4638-9_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4638-9_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4638-9

  • Online ISBN: 978-981-99-4638-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation