FSO Basics

  • Living reference work entry
  • First Online:
Handbook of Radio and Optical Networks Convergence

Abstract

Free space optical (FSO) communication is a promising alternative in terms of meeting high data rates, providing a secure, and reliable communication. However, optical beam is prone to environmental conditions which affects FSO communication performance severely. This chapter deals with the basic concepts of FSO communication, including the transmission of data through free space using modulated optical beam. The components of FSO communication systems such as transmitters and receivers, different modulation schemes, the impact of atmospheric conditions on optical beam propagation, and the mitigation techniques for reducing the channel distortion effects are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

α:

A positive value associated with the effective number of large-scale cells in the scattering process

β:

Natural number indicating the level of fading

βn:

Reflection coefficient

η:

E-O conversion efficiency which is also known as quantum efficiency of the detector

ηC:

Channel efficiency

ηr:

Receiver efficiency

ηT:

Total efficiency of the FSO system

ηt:

Transmitter efficiency

ηv:

Parameter dependent on the visibility range

Γ:

FET channel noise factor

γR:

Receiver responsivity

κ:

Scalar wavenumber

Λ:

Fresnel ratio of Gaussian beam at receiver

Λo:

Ratio of link length to beam and wave number product.

r:

Reflection coefficients of IRS elements

ℋ:

The total channel state

ℳ:

Numbers of transmitters apertures in MIMO system

\( {\mathcal{N}}_{\mathrm{\mathcal{I}}} \):

Numbers of IRS elements

\( \mathcal{N} \):

Numbers of receiver apertures in MIMO system

ωo:

Beam waist at distance z = 0

ωz:

Beam waist at distance z

ωeq:

Equivalent beam width

\( \overline{\upgamma} \):

Average SNR

\( \overline{\Theta} \):

Complementary parameter

Φ:

Solid angle of the optical beam

Φn(κ):

Power spectrum of the atmospheric turbulence which is known as “Kolmogorov power-law spectrum”

ϕn:

Phase shift induced by first link

ϕr:

Angle of arrival

ϕt:

Divergence angles

Φn_AO(κ):

Atmospheric turbulence power spectrum with adaptive optics correction

ρ:

Transverse radius from the central axis of the optical beam

ρo:

Coherence length

\( {\sigma}_B^2 \):

Rytov variance of Gaussian beam

σI:

Scintillation index

\( {\sigma}_R^2 \):

Rytov variance of unbounded plane wave

\( {\sigma}_{a_x}^2 \):

Variance of Gaussian distributed jitters in the horizontal directions

\( {\sigma}_{a_y}^2 \):

Variance of Gaussian distributed jitters in the vertical directions

\( {\sigma}_{\mathrm{Bi}}^2 \):

Scintillation indexes of Gaussian beam in weak turbulence regime and i ∈ {d, u} denotes either downlink or uplink

\( {\sigma}_{\mathrm{Id}}^2 \):

Scintillation indexes of propagating spherical waves in weak turbulence regime for downlink

\( {\sigma}_{\mathrm{Iu}}^2 \):

Scintillation indexes of propagating spherical waves in weak turbulence regime for uplink

\( {\sigma}_{\ln\;X}^2 \):

Large-scale log-irradiance variances

\( {\sigma}_{\ln\;Y}^2 \):

Small-scale log-irradiance variances

\( {\sigma}_{\mathrm{Rd}}^2 \):

Scintillation indexes of propagating plane waves in weak turbulence regime for downlink

\( {\sigma}_{\mathrm{Ru}}^2 \):

Scintillation indexes of propagating plane waves in weak turbulence regime for uplink

\( {\sigma}_{\mathrm{th}}^2 \):

Thermal noise variance

Θ:

Beam curvature parameter at receiver

θ:

Polar angle

Θo:

Beam curvature parameter at the transmitter

θn:

Shift induced by the nth reflecting surface

ε:

Indicates the detection technique, heterodyne and IM/DD detections

φn:

Phase shift induced in second link

ϖ:

Propagation parameter varying with the beam type

ξ:

Normalized distance parameter

ξm:

Optical modulation index

ζ:

Zenith angle

A:

Nominal value of turbulence structure constant at the ground level

a:

Receiver aperture diameter

A:

Collected power at the center of the optical beam

ap:

Path loss index

Acoll:

Collection area of the PD

Ar:

Active area of the PD

Bw:

System bandwidth

ca(λ):

Attenuation coefficient that describes the interaction between the atmospheric particles and light.

Cn:

Structure constant for refractive index

Cpd:

Fixed capacitance of PD per unit area

D:

Characteristic linear dimension

Dn:

Structure-function of refractive index fluctuations for statistically homogeneous and isotropic turbulence

Eb:

Bit energy

Es:

Symbol energy

Fo:

Phase front radius of curvature

Fl(κ, ϖa, θ):

Filter function and it is given by Zernike polynomials for circular aperture

FOV:

Filed of view

gm:

FET transconductance

gn:

Gain of the second link from IRS element to receiver having length of L2

Gr:

Receiver gain

Gt:

Transmitter gain

Gν:

Open-loop voltage gain

H:

Altitude of aerial platform

h:

Altitude parameter

ho:

Height of ground station

ha:

Channel gain due to atmospheric turbulence

hi:

Atmospheric turbulence aperture averaging scale height

hn:

The gain of the first link between source and IRS elements

hp:

Channel gain due to pointing error

hl:

Path loss due to atmospheric attenuation

ht:

Channel gain

i(t):

Instantaneous input current

I:

Optical intensity

I1:

Noise bandwidth factors

I2:

Noise bandwidth factors

Iavg:

Optical average intensity

Ibg:

Photo-current due to undesired collected photons from background irradiance

Ipp:

Peak-to-peak intensity

Is:

Photo-current due to collected photons from data signal

Jn(.):

Bessel function of first kind

k :

Wavenumber

Kk:

Boltzman constant

L:

Propagation distance between transmitter and receiver

L1:

Length of the first IRS element

Lo:

Large eddies or outer scale

lo:

Small eddies or inner scale

Lc:

Path loss attenuation of the optical intensity when propagates from transmitter to receiver

lv:

Visibility range

\( {L}_{P_r} \):

Receiver pointing error loss

m(t):

Electrical modulating signal

M:

Refers to levels of pulse modulation, order of M-ary bandpass modulation and order of OFDM

m:

Azimuthal frequency

Mavg:

Reciprocal average duty cycle of DPIM

N:

Number of Zernike-modes removed

n:

The radial degree

No:

Single-sided noise spectral density

no:

Additive white Gaussian noise

na:

Average number of collected photons at PD

np:

Number of collected photons at PD

Po:

Total power of the optical beam

Pr:

Received power

Pt:

Power emitted by the laser at the transmitter

q:

Electron charge

R:

Separation distance between two observation points

r:

Misalignment deviation between the centers of incident beam footprint and the detector aperture

Rb:

Bit rate

Rn:

Reynolds number

rt:

Transverse position of the observation point

Req:

Equivalent circuit resistor

Tk:

Absolute temperature

u:

Flow velocity

v:

Kinematic viscosity

w:

Wind speed

x:

Transmitted optical signal

y:

Received signal

z:

Distance parameter

References

  1. NASA, Jet Propulsion Laboratory, NASA’s Deep Space Optical Comm Demo Sends, Receives First Data (2023). https://www.jpl.nasa.gov/news/nasas-deep-space-optical-comm-demo-sends-receives-first-data

  2. H. Kaushal, G. Kaddoum, Optical communication in space: challenges and mitigation techniques. IEEE Commun. Surv. Tutorials 19(1), 57–96 (2017). https://doi.org/10.1109/COMST.2016.2603518

    Article  Google Scholar 

  3. M.A. Fernandes, P.P. Monteiro, F.P. Guiomar, Free-space Terabit optical interconnects. J. Lightwave Technol. 40(5), 1519–1526 (2022). https://doi.org/10.1109/JLT.2021.3133070

    Article  ADS  Google Scholar 

  4. D. Zmic, A. Ryzhkov, J. Straka, Y. Liu, J. Vivekanandan, Sensitivity of an automatic procedure for hydrometeor classification, in IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), vol. 4, (2000), pp. 1574–1576. https://doi.org/10.1109/IGARSS.2000.857276

    Chapter  Google Scholar 

  5. ECSystem, Ecsystem free space optics, http://www.ecsystem.cz/ec_system/download/el-10g.pdf

  6. M.M. Abadi, M.A. Cox, R.E. Alsaigh, S. Viola, A. Forbes, M.P.J. Lavery, A space division multiplexed free-space-optical communication system that can auto-locate and fully self align with a remote transceiver. Sci. Rep. 9(1), 19687 (2019)

    Article  ADS  Google Scholar 

  7. M. Dehghani Soltani, E. Sarbazi, N. Bamiedakis, P. de Souza, H. Kazemi, J.M.H. Elmirghani, I.H. White, R.V. Penty, H. Haas, M. Safari, Safety analysis for laser-based optical wireless communications: a tutorial. Proc. IEEE 110(8), 1045–1072 (2022). https://doi.org/10.1109/JPROC.2022.3181968

    Article  Google Scholar 

  8. X. Li, N. Bamiedakis, J. Wei, J.J.D. McKendry, E. **e, R. Ferreira, E. Gu, M.D. Dawson, R.V. Penty, I.H. White, μLED-based single-wavelength bidirectional POF link with 10 Gb/s aggregate data rate. J. Lightwave Technol. 33(17), 3571–3576 (2015). https://doi.org/10.1109/JLT.2015.2443984

    Article  ADS  Google Scholar 

  9. L. Zhang, D. Chitnis, H. Chun, S. Rajbhandari, G. Faulkner, D. O’Brien, S. Collins, A comparison of APD- and SPAD-based receivers for visible light communications. J. Lightwave Technol. 36(12), 2435–2442 (2018). https://doi.org/10.1109/JLT.2018.2811180

    Article  ADS  Google Scholar 

  10. T. Umezawa, S. Takamizawa, A. Matsumoto, K. Akahane, N. Yamamoto, A. Kanno, T. Kawanishi, Resonant cavity 4−λ integrated 4×4 PD-array for high optical alignment robustness WDM-FSO communications. J. Lightwave Technol. 41(8), 2465–2473 (2023). https://doi.org/10.1109/JLT.2022.3231344

    Article  ADS  Google Scholar 

  11. G. Keiser, Optical Communications Essentials, McGraw-Hill networking professional (McGraw-Hill, New York, 2003)

    Google Scholar 

  12. I.N.O. Osahon, S. Rajbhandari, I. Kostakis, A. Ihsan, D. Powell, W. Meredith, M. Missous, H. Haas, J. Tang, Experimental demonstration of 38 Gbps over 2.5 m OWC systems with eye-safe 850 nm SM-VCSELs. IEEE Photon. Technol. Lett. 36(3), 139–142 (2024). https://doi.org/10.1109/LPT.2023.3337943

    Article  ADS  Google Scholar 

  13. Z. Ghassemlooy, S. Rajbhandari, W. Popoola, Optical Wireless Communications: System and Channel Modelling with MATLAB, vol 1, 2nd edn. (CRC Press, Milton, 2019)

    Book  Google Scholar 

  14. Z. Ghassemlooy, A. Hayes, N. Seed, E. Kaluarachchi, Digital pulse interval modulation for optical communications. IEEE Commun. Mag. 36(12), 95–99 (1998). https://doi.org/10.1109/35.735885

    Article  Google Scholar 

  15. R. Mesleh, H. Elgala, H. Haas, On the performance of different OFDM based optical wireless communication systems. J. Opt. Commun. Networking 3(8), 620–628 (2011). https://doi.org/10.1364/JOCN.3.000620

    Article  Google Scholar 

  16. D.N. Amanor, W.W. Edmonson, F. Afghah, Intersatellite communication system based on visible light. IEEE Trans. Aerosp. Electron. Syst. 54(6), 2888–2899 (2018). https://doi.org/10.1109/TAES.2018.2832938

    Article  ADS  Google Scholar 

  17. M.S. Alouini, A. Goldsmith, A unified approach for calculating error rates of linearly modulated signals over generalized fading channels. IEEE Trans. Commun. 47(9), 1324–1334 (1999). https://doi.org/10.1109/26.789668

    Article  Google Scholar 

  18. A. Bekkali, C.B. Naila, K. Kazaura, K. Wakamori, M. Matsumoto, Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma–Gamma distribution. IEEE Photonics J. 2(3), 510–520 (2010). https://doi.org/10.1109/JPHOT.2010.2050306

    Article  ADS  Google Scholar 

  19. H.E. Nistazakis, A.N. Stassinakis, H.G. Sandalidis, G.S. Tombras, QAM and PSK OFDM RoFSO over ℳ-turbulence induced fading channels. IEEE Photonics J. 7(1), 1–11 (2015). https://doi.org/10.1109/JPHOT.2014.2381670

    Article  Google Scholar 

  20. M.A. Esmail, H. Fathallah, M.S. Alouini, Outage probability analysis of FSO links over foggy channel. IEEE Photonics J. 9(2), 1–12 (2017)

    Article  Google Scholar 

  21. A. Chaaban, Z. Rezki, M.S. Alouini, On the capacity of intensity-modulation direct-detection Gaussian optical wireless communication channels: a tutorial. IEEE Commun. Surv. Tutorials 24(1), 455–491 (2021)

    Article  Google Scholar 

  22. K.P. Peppas, A.N. Stassinakis, H.E. Nistazakis, G.S. Tombras, Capacity analysis of dual amplify-and-forward relayed free-space optical communication systems over turbulence channels with pointing errors. J. Opt. Commun. Networking 5(9), 1032–1042 (2013)

    Article  Google Scholar 

  23. W. Gappmair, S. Hranilovic, E. Leitgeb, OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by Hoyt distributions. IEEE Commun. Lett. 15(8), 875–877 (2011)

    Article  Google Scholar 

  24. J. Liang, A.U. Chaudhry, E. Erdogan, H. Yanikomeroglu, Link budget analysis for free-space optical satellite networks, in 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), (2022), pp. 471–476. https://doi.org/10.1109/WoWMoM54355.2022.00073

    Chapter  Google Scholar 

  25. Z. Ghassemlooy, W.O. Popoola, Terrestrial free-space optical communications, in Mobile and Wireless Communications, ed. by S.A. Fares, F. Adachi, (IntechOpen, Rijeka, 2010). https://doi.org/10.5772/7698, Chap. 17

    Chapter  Google Scholar 

  26. N. Barnwell, Free-space optical links for small spacecraft navigation, timing, and communication, Ph.D. thesis, University of Florida Gainesville, 2018

    Google Scholar 

  27. I.I. Kim, B. McArthur, E. Korevaar, Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications, in SPIE Optics East (2001)

    Google Scholar 

  28. A.A. Farid, S. Hranilovic, Outage capacity optimization for free-space optical links with pointing errors. J. Lightwave Technol. 25(7), 1702–1710 (2007)

    Article  ADS  Google Scholar 

  29. C. Gabriel, M.A. Khalighi, S. Bourennane, P. Leon, V. Rigaud, Channel modeling for underwater optical communication, in 2011 IEEE GLOBECOM Workshops (GC Wkshps), (IEEE, 2011), pp. 833–837

    Chapter  Google Scholar 

  30. O. Reynolds, XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. 174, 935–982 (1883)

    ADS  Google Scholar 

  31. L.C. Andrews, R.L. Phillips, Laser Beam Propagation Through Random Media (SPIE Press, Bellingham, 2005)

    Book  Google Scholar 

  32. G.C. Valley, Isoplanatic degradation of tilt correction and short-term imaging systems. Appl. Opt. 19(4), 574–577 (1980)

    Article  ADS  Google Scholar 

  33. L.C. Andrews, R.L. Phillips, C.Y. Young, Scintillation model for a satellite communication link at large zenith angles. Opt. Eng. 39(12), 3272–3280 (2000)

    Article  ADS  Google Scholar 

  34. S. Arnon, N.S. Kopeika, Laser satellite communication network-vibration effect and possible solutions. Proc. IEEE 85(10), 1646–1661 (1997)

    Article  Google Scholar 

  35. S. Arnon, Effects of atmospheric turbulence and building sway on optical wireless-communication systems. Opt. Lett. 28(2), 129–131 (2003)

    Article  ADS  Google Scholar 

  36. R. Boluda-Ruiz, A. García-Zambrana, B. Castillo-Vázquez, S. Hranilovic, Impact of angular pointing error on BER performance of underwater optical wireless links. Opt. Express 28(23), 34606–34622 (2020)

    Article  ADS  Google Scholar 

  37. Y. Dong, S. Tang, X. Zhang, Effect of random sea surface on downlink underwater wireless optical communications. IEEE Commun. Lett. 17(11), 2164–2167 (2013)

    Article  Google Scholar 

  38. Y. Li, Y. Zhang, Y. Zhu, Capacity of underwater wireless optical links with pointing errors. Opt. Commun. 446, 16–22 (2019)

    Article  ADS  Google Scholar 

  39. H. Safi, A. Dargahi, J. Cheng, M. Safari, Analytical channel model and link design optimization for ground-to-HAP free-space optical communications. J. Lightwave Technol. 38(18), 5036–5047 (2020). https://doi.org/10.1109/JLT.2020.2997806

    Article  ADS  Google Scholar 

  40. A. Geda, A. Czylwik, Noise analysis and equalization of a multi-photodiode optical wireless receiver, in 2012 International Workshop on Optical Wireless Communications (IWOW), (2012), pp. 1–3. https://doi.org/10.1109/IWOW.2012.6349688

    Chapter  Google Scholar 

  41. T. Komine, M. Nakagawa, Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004). https://doi.org/10.1109/TCE.2004.1277847

    Article  Google Scholar 

  42. R. Hui, M.S.M.S. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier/Academic Press, Amsterdam, 2009)

    Google Scholar 

  43. E.A. Bahaa, M.C.T. Saleh, Laser Amplifiers (Wiley, 1991), pp. 460–493. https://doi.org/10.1002/0471213748.ch13, Chap. 13

    Book  Google Scholar 

  44. F. Xu, M.A. Khalighi, S. Bourennane, Impact of different noise sources on the performance of PIN- and APD- based FSO receivers, in Proceedings of the 11th International Conference on Telecommunications, (2011), pp. 211–218

    Google Scholar 

  45. A. Jurado-Navas, J.M. Garrido-Balsells, J.F. Paris, A. Puerta-Notario, A unifying statistical model for atmospheric optical scintillation, in Numerical Simulations of Physical and Engineering Processes, ed. by J. Awrejcewicz, (IntechOpen, Rijeka, 2011). https://doi.org/10.5772/25097, Chap. 8

    Chapter  Google Scholar 

  46. I.S. Ansari, F. Yilmaz, M.S. Alouini, Performance analysis of free-space optical links over málaga (ℳ) turbulence channels with pointing errors. IEEE Trans. Wirel. Commun. 15(1), 91–102 (2016). https://doi.org/10.1109/TWC.2015.2467386

    Article  Google Scholar 

  47. V.S. Adamchik, O.I. Marichev, The algorithm for calculating integrals of hyper-geometric type functions and its realization in reduce system, in Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ‘90, (Association for Computing Machinery, New York, 1990), pp. 212–224. https://doi.org/10.1145/96877.96930

    Chapter  Google Scholar 

  48. T. Rakia, H.C. Yang, M.S. Alouini, F. Gebali, Outage analysis of practical FSO/RF hybrid system with adaptive combining. IEEE Commun. Lett. 19(8), 1366–1369 (2015). https://doi.org/10.1109/LCOMM.2015.2443771

    Article  Google Scholar 

  49. V.I. Tatarski, Wave Propagation in a Turbulent Medium (Courier Dover, New York, 2016)

    Google Scholar 

  50. A. Mikesell, A. Hoag, J.S. Hall, The scintillation of starlight. J. Opt. Soc. Am. 41(10), 689–695 (1951)

    Article  ADS  Google Scholar 

  51. D.L. Fried, Aperture averaging of scintillation. J. Opt. Soc. Am. 57(2), 169–175 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  52. J.H. Churnside, Aperture averaging of optical scintillations in the turbulent atmosphere. Appl. Opt. 30(15), 1982–1994 (1991)

    Article  ADS  Google Scholar 

  53. H.T. Yura, W. McKinley, Aperture averaging of scintillation for space-to-ground optical communication applications. Appl. Opt. 22(11), 1608–1609 (1983)

    Article  ADS  Google Scholar 

  54. S. Wang, Y. Baykal, M. Plonus, Receiver-aperture averaging effects for the intensity fluctuation of a beam wave in the turbulent atmosphere. J. Opt. Soc. Am. 73(6), 831–837 (1983)

    Article  ADS  Google Scholar 

  55. E.L. Bass, B.D. Lackovic, L.C. Andrews, Aperture averaging of optical scintillations based on a spectrum with high wave number bump. Opt. Eng. 34(1), 26–31 (1995)

    Article  ADS  Google Scholar 

  56. L.C. Andrews, R.L. Phillips, C.Y. Hopen, Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum. Waves Random Media 10(1), 53 (2000)

    Article  ADS  Google Scholar 

  57. I.E. Lee, Z. Ghassemlooy, W.P. Ng, M.A. Khalighi, S.K. Liaw, Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors. Appl. Opt. 55(1), 1–9 (2016)

    Article  ADS  Google Scholar 

  58. M.C. Gökçe, Y. Baykal, Y. Ata, M-ary pulse position modulation performance in strong atmospheric turbulence. J. Opt. Soc. Am. A 35(12), 2020–2025 (2018)

    Article  ADS  Google Scholar 

  59. M.C. Gökçe, Y. Baykal, M. Uysal, Performance analysis of multiple-input multiple-output free-space optical systems with partially coherent Gaussian beams and finite-sized detectors. Opt. Eng. 55(11), 111607 (2016)

    Article  ADS  Google Scholar 

  60. R.J. Sasiela, Wave-front correction by one or more synthetic beacons. J. Opt. Soc. Am. A 11(1), 379–393 (1994)

    Article  ADS  Google Scholar 

  61. R.J. Sasiela, Electromagnetic Wave Propagation in Turbulence: Evaluation and Application of Mellin Transforms, vol 18 (Springer Science and Business Media, 2012)

    Google Scholar 

  62. R.K. Tyson, Bit-error rate for free-space adaptive optics laser communications. J. Opt. Soc. Am. A 19(4), 753–758 (2002)

    Article  ADS  Google Scholar 

  63. C. Liu, S. Chen, X. Li, H. **an, Performance evaluation of adaptive optics for atmospheric coherent laser communications. Opt. Express 22(13), 15554–15563 (2014)

    Article  ADS  Google Scholar 

  64. D.A. Luong, A.T. Pham, Average capacity of MIMO free-space optical Gamma-Gamma fading channel, in 2014 IEEE International Conference on Communications (ICC), (IEEE, 2014), pp. 3354–3358

    Chapter  Google Scholar 

  65. X. Tang, Z. Ghassemlooy, S. Rajbhandari, W.O. Popoola, C.G. Lee, Coherent heterodyne multilevel polarization shift keying with spatial diversity in a free-space optical turbulence channel. J. Lightwave Technol. 30(16), 2689–2695 (2012)

    Article  ADS  Google Scholar 

  66. C.X. Wang, F. Haider, X. Gao, X.H. You, Y. Yang, D. Yuan, H.M. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)

    Article  Google Scholar 

  67. Q. Wu, R. Zhang, Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58(1), 106–112 (2019)

    Article  ADS  Google Scholar 

  68. P.V. Trinh, T.V. Pham, N.T. Dang, H.V. Nguyen, S.X. Ng, A.T. Pham, Design and security analysis of quantum key distribution protocol over free-space optics using dual-threshold direct-detection receiver. IEEE Access 6, 4159–4175 (2018). https://doi.org/10.1109/ACCESS.2018.2800291

    Article  Google Scholar 

  69. FSona: 2500-e: Sonabeam, http://www.fsona.com/product.php?sec=2500e

  70. CableFree: Gx00-1000-mmsc: Cablefree Gigabit range overview, https://www.cablefree.net/pdf/CableFree%20FSO%20Gigabit%20Datasheet.pdf

  71. Luckyo High-tech Co., L.: Free space laser communication system, http://high-tech.en.hisupplier.com/product-418039-Free-space-laser-communication-system.html

  72. NASA laser communication system sets record with data transmissions to and from Moon (2023), https://tinyurl.com/yhtejzxt

  73. D.L. Truong, X.V. Dang, T.N. Dang, Survivable free space optical mesh network using high-altitude platforms. Opt. Switch. Netw. 47, 100716 (2023). https://doi.org/10.1016/j.osn.2022.100716

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujan Rajbhandari .

Editor information

Editors and Affiliations

Section Editor information

Appendices

Appendix: Springer-Author Discount

LNCS authors are entitled to a 33.3% discount off all Springer publications. Before placing an order, the author should send an email, giving full details of his or her Springer publication, to orders-HD-individuals@springer.com to obtain a so-called token. This token is a number, which must be entered when placing an order via the Internet, in order to obtain the discount.

8 Checklist of Items to be Sent to Volume Editors

Here is a checklist of everything the volume editor requires from you:

□ The final LATEX source files

□ A final PDF file

□ A copyright form, signed by one author on behalf of all of the authors of the paper.

□ A readme giving the name and email address of the corresponding author.

Cross-References

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Al-Sallami, F., Rajbhandari, S., Ata, Y. (2024). FSO Basics. In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-33-4999-5_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4999-5_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4999-5

  • Online ISBN: 978-981-33-4999-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation