The AdS/CFT Correspondence

  • Living reference work entry
  • First Online:
Handbook of Quantum Gravity
  • 479 Accesses

Abstract

A short introduction to the Anti-de-Sitter/Conformal Field Theory correspondence and related ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231–252 (1998). https://doi.org/10.1023/A:1026654312961, [ar**v:hep-th/9711200 [hep-th]]

  2. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105–114 (1998). https://doi.org/10.1016/S0370-2693(98)00377-3, [ar**v:hep-th/9802109 [hep-th]]

  3. E. Witten, Adv. Theor. Math. Phys. 2, 253–291 (1998). https://doi.org/10.4310/ATMP.1998.v2.n2.a2, [ar**v:hep-th/9802150 [hep-th]]

  4. P. Breitenlohner, D.Z. Freedman, Phys. Lett. B 115, 197–201 (1982). https://doi.org/10.1016/0370-2693(82)90643-8

    Article  ADS  MathSciNet  Google Scholar 

  5. I.R. Klebanov, E. Witten, Nucl. Phys. B 556, 89–114 (1999). https://doi.org/10.1016/S0550-3213(99)00387-9, [ar**v:hep-th/9905104 [hep-th]]

  6. P.A.M. Dirac, J. Math. Phys. 4, 901–909 (1963). https://doi.org/10.1063/1.1704016

    Google Scholar 

  7. S.R. Coleman, F. De Luccia, Phys. Rev. D 21, 3305 (1980). https://doi.org/10.1103/PhysRevD.21.3305

    Article  ADS  MathSciNet  Google Scholar 

  8. H. Ooguri, C. Vafa, Adv. Theor. Math. Phys. 21, 1787–1801 (2017). https://doi.org/10.4310/ATMP.2017.v21.n7.a8, [ar**v:1610.01533 [hep-th]]

  9. J. Polchinski, String theory. Superstring Theory and Beyond, vol. 2 (Cambridge University Press, 2007). ISBN 978-0-511-25228-0, 978-0-521-63304-8, 978-0-521-67228-3. https://doi.org/10.1017/CBO9780511618123

  10. M. Henningson, K. Skenderis, JHEP 07, 023 (1998). https://doi.org/10.1088/1126-6708/1998/07/023, [ar**v:hep-th/9806087 [hep-th]]

    Article  ADS  Google Scholar 

  11. C. Fefferman, C.R. Graham, Elie Cartan et les Mathematiques d’ajourdhui (Asterique, 1985), p. 95

    Google Scholar 

  12. R. Emparan, C.V. Johnson, R.C. Myers, Phys. Rev. D 60, 104001 (1999). https://doi.org/10.1103/PhysRevD.60.104001, [ar**v:hep-th/9903238 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  13. V. Balasubramanian, P. Kraus, Commun. Math. Phys. 208, 413–428 (1999). https://doi.org/10.1007/s002200050764, [ar**v:hep-th/9902121 [hep-th]]

  14. S.W. Hawking, D.N. Page, Commun. Math. Phys. 87, 577 (1983). https://doi.org/10.1007/BF01208266

    Article  ADS  Google Scholar 

  15. E. Witten, Adv. Theor. Math. Phys. 2, 505–532 (1998). https://doi.org/10.4310/ATMP.1998.v2.n3.a3, [ar**v:hep-th/9803131 [hep-th]]

  16. M.R. Douglas, S.H. Shenker, Nucl. Phys. B 335, 635 (1990). https://doi.org/10.1016/0550-3213(90)90522-F

    Article  ADS  Google Scholar 

  17. D.J. Gross, A.A. Migdal, Phys. Rev. Lett. 64, 127 (1990). https://doi.org/10.1103/PhysRevLett.64.127

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Brezin, V.A. Kazakov, Phys. Lett. B 236, 144–150 (1990). https://doi.org/10.1016/0370-2693(90)90818-Q

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Saad, S.H. Shenker, D. Stanford, [ar**v:1903.11115 [hep-th]]

    Google Scholar 

  20. H. Osborn, A.C. Petkou, Ann. Phys. 231, 311–362 (1994). https://doi.org/10.1006/aphy.1994.1045, [ar**v:hep-th/9307010 [hep-th]]

  21. Z. Komargodski, A. Schwimmer, JHEP 12, 099 (2011). https://doi.org/10.1007/JHEP12(2011)099, [ar**v:1107.3987 [hep-th]]

    Article  ADS  Google Scholar 

  22. H. Casini, M. Huerta, Phys. Rev. D 85, 125016 (2012). https://doi.org/10.1103/PhysRevD.85.125016, [ar**v:1202.5650 [hep-th]]

    Article  ADS  Google Scholar 

  23. A. Strominger, C. Vafa, Phys. Lett. B 379, 99–104 (1996). https://doi.org/10.1016/0370-2693(96)00345-0, [ar**v:hep-th/9601029 [hep-th]]

  24. S.W. Hawking, Phys. Rev. D 14, 2460–2473 (1976). https://doi.org/10.1103/PhysRevD.14.2460

    Article  ADS  MathSciNet  Google Scholar 

  25. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343–1346 (1973). https://doi.org/10.1103/PhysRevLett.30.1343

    Article  ADS  Google Scholar 

  26. F. Gliozzi, J. Scherk, D.I. Olive, Nucl. Phys. B 122, 253–290 (1977). https://doi.org/10.1016/0550-3213(77)90206-1

    Article  ADS  Google Scholar 

  27. M.F. Sohnius, P.C. West, Phys. Lett. B 100, 245 (1981). https://doi.org/10.1016/0370-2693(81)90326-9

    Article  ADS  Google Scholar 

  28. G. ’t Hooft, Nucl. Phys. B 72, 461 (1974). https://doi.org/10.1016/0550-3213(74)90154-0

  29. A.M. Polyakov, Nucl. Phys. B Proc. Suppl. 68, 1–8 (1998). https://doi.org/10.1016/S0920-5632(98)00135-2, [ar**v:hep-th/9711002 [hep-th]]

  30. N. Beisert, C. Ahn, L.F. Alday, Z. Bajnok, J.M. Drummond, L. Freyhult, N. Gromov, R.A. Janik, V. Kazakov, T. Klose et al., Lett. Math. Phys. 99, 3–32 (2012). https://doi.org/10.1007/s11005-011-0529-2, [ar**v:1012.3982 [hep-th]]

  31. S. Caron-Huot, D. Mazac, L. Rastelli, D. Simmons-Duffin, JHEP 11, 164 (2021). https://doi.org/10.1007/JHEP11(2021)164, [ar**v:2106.10274 [hep-th]]

    Article  ADS  Google Scholar 

  32. D. Dorigoni, M.B. Green, C. Wen, JHEP 05, 089 (2021). https://doi.org/10.1007/JHEP05(2021)089, [ar**v:2102.09537 [hep-th]]

    Article  ADS  Google Scholar 

  33. S.M. Chester, M.B. Green, S.S. Pufu, Y. Wang, C. Wen, JHEP 11, 016 (2020). https://doi.org/10.1007/JHEP11(2020)016, [ar**v:1912.13365 [hep-th]]

    Article  ADS  Google Scholar 

  34. O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, JHEP 10, 091 (2008). https://doi.org/10.1088/1126-6708/2008/10/091, [ar**v:0806.1218 [hep-th]]

    Article  ADS  Google Scholar 

  35. A. Kapustin, B. Willett, I. Yaakov, JHEP 03, 089 (2010). https://doi.org/10.1007/JHEP03(2010)089, [ar**v:0909.4559 [hep-th]]

    Article  ADS  Google Scholar 

  36. N. Drukker, M. Marino, P. Putrov, Commun. Math. Phys. 306, 511–563 (2011). https://doi.org/10.1007/s00220-011-1253-6, [ar**v:1007.3837 [hep-th]]

  37. J. Polchinski, Phys. Rev. Lett. 75, 4724–4727 (1995). https://doi.org/10.1103/PhysRevLett.75.4724, [ar**v:hep-th/9510017 [hep-th]]

  38. G.T. Horowitz, A. Strominger, Nucl. Phys. B 360, 197–209 (1991). https://doi.org/10.1016/0550-3213(91)90440-9

    Article  ADS  Google Scholar 

  39. J.D. Bekenstein, Phys. Rev. D 7, 2333–2346 (1973). https://doi.org/10.1103/PhysRevD.7.2333

    Article  ADS  MathSciNet  Google Scholar 

  40. G. ’t Hooft, Conf. Proc. C 930308, 284–296 (1993). [ar**v:gr-qc/9310026 [gr-qc]]

    Google Scholar 

  41. L. Susskind, J. Math. Phys. 36, 6377–6396 (1995). https://doi.org/10.1063/1.531249, [ar**v:hep-th/9409089 [hep-th]]

  42. N. Seiberg, Nucl. Phys. B 435, 129–146 (1995). https://doi.org/10.1016/0550-3213(94)00023-8, [ar**v:hep-th/9411149 [hep-th]]

  43. I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 550, 213–219 (2002). https://doi.org/10.1016/S0370-2693(02)02980-5, [ar**v:hep-th/0210114 [hep-th]]

  44. M.A. Vasiliev, https://doi.org/10.1142/9789812793850_0030, [ar**v:hep-th/9910096 [hep-th]]

  45. S. Sachdev, J. Ye, Phys. Rev. Lett. 70, 3339 (1993). https://doi.org/10.1103/PhysRevLett.70.3339, [ar**v:cond-mat/9212030 [cond-mat]]; A. Kitaev, A simple model of quantum holography. http://online.kitp.ucsb.edu/online/entangled15/kitaev/. Talks at KITP, April 7, 2015

  46. J. Polchinski, M.J. Strassler, [ar**v:hep-th/0003136 [hep-th]]

    Google Scholar 

  47. N. Itzhaki, J.M. Maldacena, J. Sonnenschein, S. Yankielowicz, Phys. Rev. D 58, 046004 (1998). https://doi.org/10.1103/PhysRevD.58.046004, [ar**v:hep-th/9802042 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  48. G.J. Galloway, K. Schleich, D. Witt, E. Woolgar, Phys. Lett. B 505, 255–262 (2001). https://doi.org/10.1016/S0370-2693(01)00335-5, [ar**v:hep-th/9912119 [hep-th]]

  49. S.H. Shenker, D. Stanford, JHEP 12, 046 (2014). https://doi.org/10.1007/JHEP12(2014)046, [ar**v:1312.3296 [hep-th]]

    Article  ADS  Google Scholar 

  50. P. Gao, D.L. Jafferis, A.C. Wall, JHEP 12, 151 (2017). https://doi.org/10.1007/JHEP12(2017)151, [ar**v:1608.05687 [hep-th]]

    Article  ADS  Google Scholar 

  51. J.M. Maldacena, JHEP 04, 021 (2003). https://doi.org/0.1088/1126-6708/2003/04/021, [ar**v:hep-th/0106112 [hep-th]]

    Article  ADS  Google Scholar 

  52. S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006). https://doi.org/10.1103/PhysRevLett.96.181602, [ar**v:hep-th/0603001 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  53. V.E. Hubeny, M. Rangamani, T. Takayanagi, JHEP 07, 062 (2007). https://doi.org/10.1088/1126-6708/2007/07/062, [ar**v:0705.0016 [hep-th]]

    Article  ADS  Google Scholar 

  54. T. Faulkner, A. Lewkowycz, J. Maldacena, JHEP 11, 074 (2013). https://doi.org/10.1007/JHEP11(2013)074, [ar**v:1307.2892 [hep-th]]

    Article  ADS  Google Scholar 

  55. N. Engelhardt, A.C. Wall, JHEP 01, 073 (2015). https://doi.org/10.1007/JHEP01(2015)073, [ar**v:1408.3203 [hep-th]]

    Article  ADS  Google Scholar 

  56. J. Maldacena, L. Susskind, Fortsch. Phys. 61, 781–811 (2013). https://doi.org/10.1002/prop.201300020, [ar**v:1306.0533 [hep-th]]

  57. B. Czech, J.L. Karczmarek, F. Nogueira, M. Van Raamsdonk, Class. Quant. Grav. 29, 155009 (2012). https://doi.org/10.1088/0264-9381/29/15/155009, [ar**v:1204.1330 [hep-th]]

    Article  ADS  Google Scholar 

  58. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, A. Tajdini, Rev. Mod. Phys. 93(3), 035002 (2021). https://doi.org/10.1103/RevModPhys.93.035002, [ar**v:2006.06872 [hep-th]]

  59. B. Swingle, Phys. Rev. D 86, 065007 (2012). https://doi.org/10.1103/PhysRevD.86.065007, [ar**v:0905.1317 [cond-mat.str-el]]

    Article  ADS  Google Scholar 

  60. A. Almheiri, X. Dong, D. Harlow, JHEP 04, 163 (2015). https://doi.org/10.1007/JHEP04(2015)163, [ar**v:1411.7041 [hep-th]]

    Article  ADS  Google Scholar 

  61. T. Banks, W. Fischler, S.H. Shenker, L. Susskind, Phys. Rev. D 55, 5112–5128 (1997). https://doi.org/10.1103/PhysRevD.55.5112, [ar**v:hep-th/9610043 [hep-th]]

  62. E. Witten, [ar**v:hep-th/0106109 [hep-th]]

    Google Scholar 

  63. A. Strominger, JHEP 10, 034 (2001). https://doi.org/10.1088/1126-6708/2001/10/034, [ar**v:hep-th/0106113 [hep-th]]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This field was developed by numerous authors over many years, and we could not do justice to all their contributions. There exist other reviews and books that cover the subject more extensively and include applications to other fields beyond problems in quantum gravity.

J.M. is supported in part by U.S. Department of Energy grant DE-SC0009988 and by the Simons Foundation grant 385600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Maldacena .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Maldacena, J. (2024). The AdS/CFT Correspondence. In: Bambi, C., Modesto, L., Shapiro, I. (eds) Handbook of Quantum Gravity. Springer, Singapore. https://doi.org/10.1007/978-981-19-3079-9_65-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3079-9_65-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3079-9

  • Online ISBN: 978-981-19-3079-9

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation