Mice as Experimental Models for Cancer Research

  • Living reference work entry
  • First Online:
Handbook of Animal Models and its Uses in Cancer Research

Abstract

Cancer is a devastating disease affecting a large number of people worldwide. There has been relentless effort to learn various aspects of the development of the disease as well as how to combat it in various ways. In that process, ideal models for cancer research were first in harness. Because of several advantages, inbred mouse strain (Mus musculus) has proved to be an ideal animal model to investigate changes in different tissues during and after development of cancer induced by different carcinogens or by genetic manipulation, yielding possibilities of intercepting it at specific steps preventing advancement of the disease by modulating physiological and tissue-specific regulation of genes. Carcinogen-induced cancer models are most suited and generally used to assess the therapeutic properties of drugs, explore precautionary actions for carcinogenicity, and understand molecular mechanisms involved in various types of cancer. Initial manipulation of gene expression in mouse genome resulted in production of transgenic mice categorized by the constitutive expression of a particular gene and knockout mice characterized by the ablation of a specific gene. These planned mouse models are projected to serve as a foundation for additional exploration of the molecular basis of human diseases. The present chapter is mainly focused on the principles, advancement, and application of currently conducted researches deployed in the conditional regulation of gene expression in the investigation of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson LM (1988) Increased numbers of N -nitrosodimethylamine-initiated lung tumors in mice by chronic co-administration of ethanol. Carcinogenesis 9:1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Andreassen A, Møllersen L, Vikse R, Steffensen IL, Mikalsen A, Paulsen JE, Alexander J (2002) One dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)or 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) induces tumours in Min/+ mice by truncation mutations or LOHin the Apc gene. Mutat Res 517:157–166

    Article  CAS  PubMed  Google Scholar 

  • Barghout SH, Aman A, Nouri K, Blatman Z, Arevalo K, Thomas GE, MacLean N, Hurren R, Ketela T, Saini M, Abohawya M, Kiyota T, Al-Awar R, Schimmer AD (2021) A genome-wide CRISPR/Cas9 screen in acute myeloid leukemia cells identifies regulators of TAK-243 sensitivity. JCI Insight 6:e141518. https://doi.org/10.1172/jci.insight.141518

    Article  PubMed Central  Google Scholar 

  • Blumer T, Fofana I, Matter MS, Wang X, Montazeri H, Calabrese D, Coto-Llerena M, Boldanova T, Nuciforo S, Kancherla V, Tornillo L, Piscuoglio S, Wieland S, Terracciano LM, Ng CKY, Heim MH (2019) Hepatocellular carcinoma xenografts established from needle biopsies preserve the characteristics of the originating tumors. Hepatol Commun 3:971–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brake T, Lambert PF (2005) Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc Natl Acad Sci U S A 102:2490–2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown LM, Malkinson AM, Rannels DE, Rannels SR (1999) Compensatory lung growth after partial pneumonectomy enhances lung tumorigenesis induced by 3-methylcholanthrene. Cancer Res 59:5089–5092

    CAS  PubMed  Google Scholar 

  • Cassoux N, Thuleau A, Assayag F, Aerts I, Decaudin D (2015) Establishment of an orthotopic xenograft mice model of retinoblastoma suitable for preclinical testing. Ocul Oncol Pathol 1:200–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen RJ, Siao SH, Hsu CH, Chang CY, Chang LW, Wu CH, Lin P, Wang YJ (2014) TCDD promotes lung tumors via attenuation of apoptosis through activation of the Akt and ERK1/2 signaling pathways. PLoS One 9:e99586

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheon DJ, Orsulic S (2011) Mouse models of cancer. J Annu Rev Pathol 6:95–119

    Article  CAS  Google Scholar 

  • Couto SS, Cao M, Duarte PC, Petrosky W, Wang S, Romanienko P, Wu H, Cardiff R, Abate-Shen C, Cunha GR (2009) Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates tumorigenesis in a mouse model of prostate cancer. Differentiation 77:103–111

    Article  CAS  PubMed  Google Scholar 

  • Das J, Das S, Samadder A, Bhadra K, Khuda-Bukhsh AR (2012) Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. Eur J Pharm Sci 47:313–324

    Article  CAS  PubMed  Google Scholar 

  • Das S, Das J, Samadder A, Paul A, Khuda-Bukhsh AR (2013) Efficacy of PLGA-loaded apigenin nanoparticles in Benzo [a] pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades. Food Chem Toxicol 62:670–680

    Article  CAS  PubMed  Google Scholar 

  • De Vries A, Flores ER, Miranda B, Hsieh H-M, van Oostrom CTM, Sage J, Jacks T (2002) Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci 99:2948–2953

    Article  PubMed  PubMed Central  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Che Y, Zhang C, Huang J, Lei Y, Lu Z, Sun N, He J (2021) LAMC1 upregulation via TGFβ induces inflammatory cancer-associated fibroblasts in esophageal squamous cell carcinoma via NF-κB–CXCL1–STAT3. Mol Oncol. https://doi.org/10.1002/1878-0261.13053

  • Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    Article  CAS  PubMed  Google Scholar 

  • Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646

    Article  CAS  PubMed  Google Scholar 

  • Giri U, Iqbal M, Athar M (1999) Potassium bromate (KBrO3) induces renal proliferative response and damage by elaborating oxidative stress. Cancer Lett 135:181–188

    Article  CAS  PubMed  Google Scholar 

  • Gordon JW (1989) Transgenic animals. Int Rev Cytol 115:171–230

    Google Scholar 

  • Goyal PK, Verma P, Sharma P, Parmar J, Agarwal A (2010) Evaluation of anti-cancer and anti-oxidative potential of Syzygium Cumini against benzo[a]pyrene (BaP) induced gastric carcinogenesis in mice. Asian Pac J Cancer Prev 11:753–758

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Harris AL, Joseph RW, Copland JA (2016) Patient-derived tumor xenograft models for melanoma drug discovery. Expert Opin Drug Discov 11:895–906

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Salazar M, Guevara-González RG, Cruz-Hernández A, Guevara-Olvera L, Bello-Pérez LA, Castaño-Tostado E, Loarca-Piña G (2013) Flaxseed (Linum usitatissimum L.) and its total non-digestible fraction influence the expression of genes involved inazoxymethane-induced colon cancer in rats. Plant Foods Hum Nutr 68:259–267

    Article  PubMed  Google Scholar 

  • Hiroshima Y, Zhang Y, Zhang N, Maawy A, Mii S, Yamamoto M, Uehara F, Miwa S, Yano S, Murakami T, Momiyama M, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Murata T, Endo I, Hoffman RM (2015) Establishment of a patient-derived orthotopic Xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLoS One 10:e0117417

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollandsworth HM, Amirfakhri S, Filemoni F, Schmitt V, Wennemuth G, Schmidt A, Hoffman RM, Singer BB, Bouvet M (2020) Anti-carcinoembryonic antigen-related cell adhesion molecule antibody for fluorescence visualization of primary colon cancer and metastases in patient-derived orthotopic xenograft mouse models. Oncotarget 11:429–439

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollingshead MG, Alley MC, Camalier RF, Abbott BJ, Mayo JG, Malspeis L, Grever MR (1995) In vivo cultivation of tumor cells in hollow fibers. Life Sci 57:131–141

    Article  CAS  PubMed  Google Scholar 

  • Hoogervorst EM, van Oostrom CT, Beems RB, van Benthem J, van den Berg J, van Kreijl CF, Vos JG, de Vries A, van Steeg H (2005) 2-AAF-induced tumor development innucleotide excision repair-deficient mice is associated with a defect in global genome repair but not with transcription coupled repair. DNA Repair (Amst) 4:3–9

    Article  CAS  Google Scholar 

  • Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, Naito M, Enomoto K, Watanabe S, Mak TW, Nakano T (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Investig 113:1774–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung KE, Maricevich MA, Richard LG, Chen WY, Richardson MP, Kunin A, Bronsond RT, Mahmood U, Kucherlapati R (2010) Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc Natl Acad Sci 107:1565–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia B, Zhao C, Bayerl M, Shike H, Claxton DF, Ehmann WC, Mineishi S, Schell TD, Zheng P, Zhang Y, Shultz LD, Prabhu KS, Paulson RF, Zheng H (2021) A novel clinically relevant graft-versus-leukemia model in humanized mice. J Leukocyte Biol. https://doi.org/10.1002/JLB.5AB0820-542RR. Advance online publication

  • Jones TR, Bigner SH, Schold SC Jr, Eng LF, Bigner DD (1981) Anaplastic human gliomas grown in athymic mice. Morphology and glial fibrillary acidic protein expression. Am J Pathol 105:316–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamp D (2009) Asbestos-induced lung diseases: an update. Transl Res 153:143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanojia D, Vaidya MM (2006) 4-Nitroquinoline-1-oxide induced experimental oral carcinogenesis. Oral Oncol 42:655–667

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Bhatia-Gaur R, Banach-Petrosky WA, Desai N, Wang Y, Hayward SW, Cunha GR, Cardiff RD, Shen MM, Abate-Shen C (2002) Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res 62:2999–3004

    CAS  PubMed  Google Scholar 

  • Kobayashi N, Allen N, Clendenon NR, Ko LW (1980) An improved rat brain-tumor model. J Neurosurg 53:808–815

    Article  CAS  PubMed  Google Scholar 

  • Kreisel D, Gelman AE, Higashikubo R, Lin X, Vikis HG, White JM, Toth KA, Deshpande C, Carreno BM, You M, Taffner SM, Yokoyama WM, Bui JD, Schreiber RD, Krupnick AS (2012) Strain-specific variation in murine natural killer gene complex contributes to differences inimmuno surveillance for urethane-induced lung cancer. Cancer Res 72:4311–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D, Naber SP, Jerry DJ (2000) Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol 157:2151–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larmour LI, Cousins FL, Teague JA, Deane JA, Jobling TW, Gargett CE (2018) A patient derived xenograft model of cervical cancer and cervical dysplasia. PLoS One 13:e0206539

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee GH (2000) Paradoxical effects of phenobarbital on mouse hepatocarcinogenesis. Toxicol Pathol 2000:28. https://doi.org/10.1177/019262330002800201

    Article  Google Scholar 

  • Lerman MI, Minna JD (2000) The 630-kblung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. Cancer Res 60:6116–6133

    CAS  PubMed  Google Scholar 

  • Leung WK, Wu KC, Wong CY, Cheng AS, Ching AK, Chan AW, Chong WW, Go MY, Yu J, To KF, Wang X, Chui YL, Fan DM, Sung JJ (2008) Transgenic cyclooxygenase-2expression and high salt enhanced susceptibility to chemical-induced gastric cancer development in mice. Carcinogenesis 29:1648–1654

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Gu L (2021) Establishment and characterization of HXWMF-1: the first mouse fibroblastic tumor cell line derived from leukemia-associated fibroblasts. Cancer Cell Int 21:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison JP, Satoh H, Foley J, Horton JL, Dunnick JK, Kissling GE, Malarkey DE (2007) N-ethyl-N-nitrosourea (ENU)-induced meningiomatosis and meningioma inp16(INK4a)/p19(ARF) tumor suppressor gene-deficient mice. Toxicol Pathol 35:780–787

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakazawa H, English D, Randell PL, Nakazawa K, Martel N, Armstrong BK, Yamasaki H (1994) UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc Natl Acad Sci U S A 91:360–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neufert C, Heichler C, Brabletz T, Scheibe K, Boonsanay V, Greten FR, Neurath MF (2021) Inducible mouse models of colon cancer for the analysis of sporadic and inflammation-driven tumor progression and lymph node metastasis. Nat Protoc 16:61–85

    Article  CAS  PubMed  Google Scholar 

  • Nowotarski SL, Feith DJ, Shantz LM (2015) Skin carcinogenesis studies using mouse models with altered polyamines. Cancer Growth Metastasis 9:17–27

    Google Scholar 

  • Ochiai M, Imai H, Sugimura T, Nagao M, Nakagama H (2002) Induction of intestinal tumors and lymphomas in C57BL/6N mice by a food-borne carcinogen, 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine. Jpn J Cancer Res 93:478–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P, Ganapasam S (2014) Luteolin, a bioflavonoid inhibits Azoxymethane-induced colorectal cancer through activation of Nrf2 signaling. Toxicol Mech Methods 24:13–20

    Article  CAS  PubMed  Google Scholar 

  • Paul A, Das J, Das S, Samadder A, Khuda-Bukhsh AR (2013a) Anticancer potential of myricanone, a major bioactive component of Myrica cerifera: novel signaling cascade for accomplishing apoptosis. J Acupunct Meridian Stud 6:188–198

    Article  PubMed  Google Scholar 

  • Paul A, Das S, Das J, Samadder A, Khuda-Bukhsh AR (2013b) Cytotoxicity and apoptotic signalling cascade induced by chelidonine-loaded PLGA nanoparticles in HepG2 cells in vitro and bioavailability of nano-chelidonine in mice in vivo. Toxicol Lett 222:10–22

    Article  CAS  PubMed  Google Scholar 

  • Rebecca VW, Somasundaram R, Herlyn M (2020) Pre-clinical modeling of cutaneous melanoma. Nat Commun 11:2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley RR, Duensing S, Brake T, Münger K, Lambert PF, Arbeit JM (2003) Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res 63:4862–4871

    CAS  PubMed  Google Scholar 

  • Rivera M, Fichtner I, Wulf-Goldenberg A, Sers C, Merk J, Patone G, Alp KM, Kanashova T, Mertins P, Hoffmann J, Stein U, Walther W (2021) Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine. Neoplasia 23:21–35

    Article  CAS  PubMed  Google Scholar 

  • Roden R, Wu TC (2006) How will HPV vaccines affect cervical cancer? Nat Rev Cancer 6:753–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371:1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Sánchez Negrette M, Montenegro MA, Catuogno MS, Lértora WJ (2007) Decrease of intestinal tumors induced by 1,2-dimethylhydrazine in rats fed with cow milk and buffalo milk. Biocell 31:391–396

    Article  Google Scholar 

  • Schmied BM, Ulrich AB, Matsuzaki H, El-Metwally TH, Ding X, Fernandes ME, Adrian TE, Chaney WG, Batra SK, Pour PM (2000) Biologic instability of pancreatic cancer xenografts in the nude mouse. Carcinogenesis 21:1121–1127

    Article  CAS  PubMed  Google Scholar 

  • Schonig K, Schwenk F, Rajewsky K, Bujard H (2002) Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 30:e134

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui RA, Harvey KA, Walker C, Altenburg J, Xu Z, Terry C, Camarillo I, Jones-Hall Y, Mariash C (2013) Characterization of synergistic anti-cancer effects of docosahexaenoic acid and curcumin on DMBA-induced mammary tumorigenesis in mice. BMC Cancer 13:418

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva AP, Almeida A, Cachucho A, Neto JL, Demeyer S, Ramos de Matos M, Hogan T, Li Y, Meijerink JP, Cools J, Grosso AR, Seddon B, Barata JT (2021) Over expression of wild type IL-7Rα promotes T-cell acute lymphoblastic leukemia/lymphoma. Blood. https://doi.org/10.1182/blood.2019000553. Advance online publication

  • Sivanesan D, Begum VH (2007) Modulatory effect of Gynandropsis gynandra L. on glucose metabolizingenzymes in aflatoxin B1-induced hepatocellular carcinomain rats. Indian J Biochem Biophys 44:477–480

    CAS  PubMed  Google Scholar 

  • Sudha T, El-Far AH, Mousa DS, Mousa SA (2020) Resveratrol and its nanoformulation attenuate growth and the angiogenesis of xenograft and orthotopic colon cancer models. Molecules 25:1412

    Article  CAS  PubMed Central  Google Scholar 

  • Takeuchi H, Saoo K, Yamakawa K, Matsuda Y, Yokohira M, Zeng Y, Kuno T, Totsuka Y, Takahashi M, Wakabayashi K, Imaida K (2010) Tumorigenesis of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), but not enhancing effects of concomitant high-fat diet, on lung carcinogenesis in female A/J mice. Oncol Lett 1:137–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno T, Matsumura H, Tanaka K, Iwasaki T, Ueno M, Fu**aga K, Asada K, Kato I (2000) Site-specific integration of a transgene mediated by a hybrid adenovirus/adeno-associated virus vector using the Cre/loxP-expression-switching system. Biochem Biophys Res Commun 273:473–478

    Article  CAS  PubMed  Google Scholar 

  • Valkenburg KC, Williams BO (2011) Mouse models of prostate cancer. In: Prostate cancer. Demos Medical, pp 1–22

    Google Scholar 

  • Vargas-Olvera CY, Sánchez-González DJ, Solano JD, Aguilar-Alonso FA, Montalvo-Muñoz F, Martínez-Martínez CM, Medina-Campos ON, Ibarra-Rubio ME (2012) Characterization of N-diethylnitrosamine-initiated and ferric nitrilotriacetate-promoted renal cell carcinoma experimental model and effect of a tamarind seed extract against acute nephrotoxicity and carcinogenesis. Mol Cell Biochem 369:105–117

    Article  CAS  PubMed  Google Scholar 

  • Vargo-Gogola T, Rosen JM (2007) Modelling breast cancer: one size does not fit all. Nat Rev Cancer 7:659–672

    Article  CAS  PubMed  Google Scholar 

  • Wallace J (2000) Humane endpoints and cancer research. ILAR 41:87–93

    Article  CAS  Google Scholar 

  • Wang Y, Arlt VM, Roufosse CA, McKim KL, Myers MB, Phillips DH, Parsons BL (2012) ACB-PCR measurement of H-rascodon 61 CAA→CTA mutation provides an early indication of aristolochic acid I carcinogenic effect in tumor target tissues. Environ Mol Mutagen 53:495–504

    Article  CAS  PubMed  Google Scholar 

  • Weiss B, Shannon K (2004) Preclinical trials in mouse cancer models. In: Holland EC (ed) Mouse models of human cancers. Wiley, Hoboken

    Google Scholar 

  • Weissenberger J, Steinbach JP, Malin G, Spada S, Rülicke T, Aguzzi A (1997) Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 14:2005–2013

    Article  CAS  PubMed  Google Scholar 

  • Windle JJ (1990) Retinoblastoma in transgenic mice. Nature 343:665–669

    Article  CAS  PubMed  Google Scholar 

  • **e J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, Rosenthal A, Epstein EH Jr, de Sauvage FJ (1998) Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 391:90–92

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Guan B, Men T, Fujimoto J, Xu X (2013) Comparable molecular alterations in 4-Nitroquinoline 1-oxide-induced oral and esophageal cancer in mice and in human esophageal cancer, associated with poor prognosis of patients. In Vivo 27:473–448

    CAS  PubMed  Google Scholar 

  • Zhang J, Schweers B, Dyer MA (2004) The first knockout mouse model of retinoblastoma. Cell Cycle 3:952–959

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Moore L, Ji P (2011) Mouse models for cancer research. Chin J Cancer 30:149–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Ma B, Homer RJ, Zheng T, Elias JA (2001) Use of the tetracycline-controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J Biol Chem 276:25222–22529

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khuda-Bukhsh, A.R., Das, J., Samadder, A. (2022). Mice as Experimental Models for Cancer Research. In: Pathak, S., Banerjee, A., Bisgin, A. (eds) Handbook of Animal Models and its Uses in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-1282-5_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1282-5_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1282-5

  • Online ISBN: 978-981-19-1282-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation