AGN Feedback in Groups and Clusters of Galaxies

  • Living reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics

Abstract

Active galactic nuclei (AGN) feedback stands for the dramatic impact that a supermassive black hole can make on its environment. It has become an essential element of models that describe the formation and evolution of baryons in massive virialized halos in the universe. The baryons’ radiative losses in the cores of these halos might lead to massive cooling of the gas and vigorous star formation on the order of ∼10–1000 M yr−1, whereas observations show that the star formation rates are considerably less (i.e., ∼1–10 M yr−1). It has now become clear from an observational, theoretical, and simulation perspective that the activity of central supermassive black holes compensates for gas cooling losses and prevents very high star formation rates in massive galaxies, which otherwise would be much brighter than observed today. While AGN feedback is important over a broad range of halo masses, the most massive objects like galaxy groups and clusters truly provide outstanding laboratories for understanding the intrinsic details of AGN feedback. Partly, this is because in the nearby massive objects, we can directly see what AGN feedback is doing to its surrounding hot halo in exquisite details, as opposed to less massive or distant systems. Yet another reason is that in the most massive objects, the magnitude of AGN feedback has to be extremely large, providing the most stringent constraints on the models. In a nutshell, the AGN feedback paradigm in groups and clusters postulates that (i) a supermassive black hole in the center of a halo can release a vast amount of energy, (ii) this energy can be intercepted and thermalized by the gaseous atmosphere of the halo, and (iii) the system self-regulates so that the black hole energy releases scales with the properties of the halo. A combination of multiwavelength observations, in particular X-ray and radio wavebands, provides compelling evidence of the AGN feedback importance. Similarly, theoretical arguments suggest that self-regulation might be a natural property of a system consisting of the gaseous atmosphere and a black hole at the bottom of the potential well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Z. Abdulla, J.E. Carlstrom, A.B. Mantz, D.P. Marrone, C.H. Greer, J.W. Lamb, E.M. Leitch, S. Muchovej, C. O’Donnell, T.J. Plagge, D. Woody, Constraints on the thermal contents of the X-ray cavities of cluster MS 0735.6+7421 with Sunyaev-Zel’dovich effect observations. ApJ 871(2), 195 (2019). https://doi.org/10.3847/1538-4357/aaf888

  • M.A. Abramowicz, X. Chen, S. Kato, J.-P. Lasota, O. Regev, Thermal equilibria of accretion disks. ApJ 438, L37 (1995). https://doi.org/10.1086/187709

    Article  ADS  Google Scholar 

  • S.W. Allen, R.J.H. Dunn, A.C. Fabian, G.B. Taylor, C.S. Reynolds, The relation between accretion rate and jet power in X-ray luminous elliptical galaxies. MNRAS 372(1), 21–30 (2006). https://doi.org/10.1111/j.1365-2966.2006.10778.x

    Article  ADS  Google Scholar 

  • D. Anglés-Alcázar, R. Davé, C.-A. Faucher-Giguère, F. Özel, P.F. Hopkins, Gravitational torque-driven black hole growth and feedback in cosmological simulations. MNRAS 464(3), 2840–2853 (2017). https://doi.org/10.1093/mnras/stw2565

    Article  ADS  Google Scholar 

  • F.K. Baganoff, Y. Maeda, M. Morris, M.W. Bautz, W.N. Brandt, W. Cui, J.P. Doty, E.D. Feigelson, G.P. Garmire, S.H. Pravdo, G.R. Ricker, L.K. Townsley, Chandra X-ray spectroscopic imaging of sagittarius A* and the central Parsec of the galaxy. ApJ 591(2), 891–915 (2003). https://doi.org/10.1086/375145

    Article  ADS  Google Scholar 

  • Y.M. Bahé, D.J. Barnes, C. Dalla Vecchia, S.T. Kay, S.D.M. White, I.G. McCarthy, J. Schaye, R.G. Bower, R.A. Crain, T. Theuns, A. Jenkins, S.L. McGee, M. Schaller, P.A. Thomas, J.W. Trayford, The Hydrangea simulations: galaxy formation in and around massive clusters. MNRAS 470(4), 4186–4208 (2017). https://doi.org/10.1093/mnras/stx1403

    Article  ADS  Google Scholar 

  • S.A. Balbus, N. Soker, Theory of local thermal instability in spherical systems. ApJ 341, 611 (1989). https://doi.org/10.1086/167521

    Article  ADS  Google Scholar 

  • C.J. Bambic, C.S. Reynolds, Efficient production of sound waves by AGN jets in the intracluster medium. ApJ 886(2), 78 (2019). https://doi.org/10.3847/1538-4357/ab4daf

  • C.J. Bambic, B.J. Morsony, C.S. Reynolds, Suppression of AGN-driven turbulence by magnetic fields in a magnetohydrodynamic model of the intracluster medium. ApJ 857(2), 84 (2018). https://doi.org/10.3847/1538-4357/aab558

  • D.J. Barnes, S.T. Kay, Y.M. Bahé, C. Dalla Vecchia, I.G. McCarthy, J. Schaye, R.G. Bower, A. Jenkins, P.A. Thomas, M. Schaller, R.A. Crain, T. Theuns, S.D.M. White, The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies. MNRAS 471(1), 1088–1106 (2017). https://doi.org/10.1093/mnras/stx1647

    Article  ADS  Google Scholar 

  • L. Bassini, E. Rasia, S. Borgani, G.L. Granato, C. Ragone-Figueroa, V. Biffi, A. Ragagnin, K. Dolag, W. Lin, G. Murante, N.R. Napolitano, G. Taffoni, L. Tornatore, Y. Wang, The DIANOGA simulations of galaxy clusters: characterising star formation in protoclusters. A&A 642, A37 (2020). https://doi.org/10.1051/0004-6361/202038396

    Article  ADS  Google Scholar 

  • M.C. Begelman, Impact of active galactic nuclei on the surrounding medium, in Gas and Galaxy Evolution, ed. by J.E. Hibbard, M. Rupen, J.H. van Gorkom. Astronomical Society of the Pacific Conference Series, vol. 240 (2001), p. 363

    Google Scholar 

  • M.C. Begelman, C.F. McKee, G.A. Shields, Compton heated winds and coronae above accretion disks. I. Dynamics. ApJ 271, 70–88 (1983). https://doi.org/10.1086/161178

    Google Scholar 

  • T. Belloni, J. Homan, P. Casella, M. van der Klis, E. Nespoli, W.H.G. Lewin, J.M. Miller, M. Méndez, The evolution of the timing properties of the black-hole transient GX 339-4 during its 2002/2003 outburst. A&A 440(1), 207–222 (2005). https://doi.org/10.1051/0004-6361:20042457

    Article  ADS  Google Scholar 

  • P.N. Best, T.M. Heckman, On the fundamental dichotomy in the local radio-AGN population: accretion, evolution and host galaxy properties. MNRAS 421(2), 1569–1582 (2012). https://doi.org/10.1111/j.1365-2966.2012.20414.x

    Article  ADS  Google Scholar 

  • P.N. Best, C.R. Kaiser, T.M. Heckman, G. Kauffmann, AGN-controlled cooling in elliptical galaxies. MNRAS 368(1), L67–L71 (2006). https://doi.org/10.1111/j.1745-3933.2006. 00159.x

    Article  ADS  Google Scholar 

  • P.N. Best, A. von der Linden, G. Kauffmann, T.M. Heckman, C.R. Kaiser, On the prevalence of radio-loud active galactic nuclei in brightest cluster galaxies: implications for AGN heating of cooling flows. MNRAS 379(3), 894–908 (2007). https://doi.org/10.1111/j.1365-2966.2007.11937.x

    Article  ADS  Google Scholar 

  • L. Bîrzan, D.A. Rafferty, B.R. McNamara, M.W. Wise, P.E.J. Nulsen, A systematic study of radio-induced X-ray cavities in clusters, groups, and galaxies. ApJ 607(2), 800–809 (2004). https://doi.org/10.1086/383519

    Article  ADS  Google Scholar 

  • R.D. Blandford, M.C. Begelman, On the fate of gas accreting at a low rate on to a black hole. MNRAS 303(1), L1–L5 (1999). https://doi.org/10.1046/j.1365-8711.1999.02358.x

    Article  ADS  Google Scholar 

  • E.L. Blanton, S.W. Randall, T.E. Clarke, C.L. Sarazin, B.R. McNamara, E.M. Douglass, M. McDonald, A very deep Chandra observation of A2052: bubbles, shocks, and sloshing. ApJ 737(2), 99 (2011). https://doi.org/10.1088/0004-637X/737/2/99

  • H. Boehringer, W. Voges, A.C. Fabian, A.C. Edge, D.M. Neumann, A ROSAT HRI study of the interaction of the X-ray emitting gas and radio lobes of NGC 1275. MNRAS 264, L25–L28 (1993). https://doi.org/10.1093/mnras/264.1.L25

    Article  ADS  Google Scholar 

  • H. Bondi, On spherically symmetrical accretion. MNRAS 112, 195 (1952). https://doi.org/10.1093/mnras/112.2.195

    Article  ADS  MathSciNet  Google Scholar 

  • C.M. Booth, J. Schaye, Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests. MNRAS 398(1), 53–74 (2009). https://doi.org/10.1111/j.1365-2966.2009.15043.x

    Article  ADS  Google Scholar 

  • M.A. Bourne, D. Sijacki, AGN jet feedback on a moving mesh: cocoon inflation, gas flows and turbulence. MNRAS 472(4), 4707–4735 (2017). https://doi.org/10.1093/mnras/stx2269

    Article  ADS  Google Scholar 

  • G. Branduardi-Raymont, D. Fabricant, E. Feigelson, P. Gorenstein, J. Grindlay, A. Soltan, G. Zamorani, Soft X-ray images of the central region of the Perseus cluster. ApJ 248, 55–60 (1981). https://doi.org/10.1086/159129

    Article  ADS  Google Scholar 

  • R. Brennan, E. Choi, R.S. Somerville, M. Hirschmann, T. Naab, J.P. Ostriker, Momentum-driven winds from radiatively efficient black hole accretion and their impact on galaxies. ApJ 860(1), 14 (2018). https://doi.org/10.3847/1538-4357/aac2c4

  • F. Brighenti, W.G. Mathews, Stop** cooling flows with Jets. ApJ 643(1), 120–127 (2006). https://doi.org/10.1086/502645

    Article  ADS  Google Scholar 

  • M. Brüggen, C.R. Kaiser, Hot bubbles from active galactic nuclei as a heat source in cooling-flow clusters. Nature 418(6895), 301–303 (2002). https://doi.org/10.1038/nature00857

    Article  ADS  Google Scholar 

  • J.O. Burns, The radio properties of cD galaxies in Abell clusters. I. An X-ray selected sample. AJ 99, 14 (1990). https://doi.org/10.1086/115307

    Google Scholar 

  • I.S. Butsky, D.B. Fielding, C.C. Hayward, C.B. Hummels, T.R. Quinn, J.K. Werk, The impact of cosmic rays on thermal instability in the circumgalactic medium. ApJ 903(2), 77 (2020). https://doi.org/10.3847/1538-4357/abbad2

  • M.S. Calzadilla, M. McDonald, M. Bayliss, B.A. Benson, L.E. Bleem, M. Brodwin, A.C. Edge, B. Floyd, N. Gupta, J. Hlavacek-Larrondo, B.R. McNamara, C.L. Reichardt, SPT Collaboration, Discovery of a powerful >1061 erg AGN outburst in the distant galaxy cluster SPT-CLJ0528-5300. ApJ 887(1), L17 (2019). https://doi.org/10.3847/2041-8213/ab5b07

  • J.E. Carlstrom, P.A.R. Ade, K.A. Aird, B.A. Benson, L.E. Bleem, S. Busetti, C.L. Chang, E. Chauvin, H.M. Cho, T.M. Crawford, A.T. Crites, M.A. Dobbs, N.W. Halverson, S. Heimsath, W.L. Holzapfel, J.D. Hrubes, M. Joy, R. Keisler, T.M. Lanting, A.T. Lee, E.M. Leitch, J. Leong, W. Lu, M. Lueker, D. Luong-Van, J.J. McMahon, J. Mehl, S.S. Meyer, J.J. Mohr, T.E. Montroy, S. Padin, T. Plagge, C. Pryke, J.E. Ruhl, K.K. Schaffer, D. Schwan, E. Shirokoff, H.G. Spieler, Z. Staniszewski, A.A. Stark, C. Tucker, K. Vanderlinde, J.D. Vieira, R. Williamson, The 10 meter south pole telescope. PASP 123(903), 568 (2011). https://doi.org/10.1086/659879

  • E. Choi, J.P. Ostriker, T. Naab, P.H. Johansson, Radiative and momentum-based mechanical active galactic nucleus feedback in a three-dimensional galaxy evolution code. ApJ 754(2), 125 (2012). https://doi.org/10.1088/0004-637X/754/2/125

  • E. Choi, J.P. Ostriker, T. Naab, L. Oser, B.P. Moster, The impact of mechanical AGN feedback on the formation of massive early-type galaxies. MNRAS 449(4), 4105–4116 (2015). https://doi.org/10.1093/mnras/stv575

    Article  ADS  Google Scholar 

  • E. Churazov, W. Forman, C. Jones, H. Böhringer, Asymmetric, arc minute scale structures around NGC 1275. A&A 356, 788–794 (2000)

    ADS  Google Scholar 

  • E. Churazov, M. Brüggen, C.R. Kaiser, H. Böhringer, W. Forman, Evolution of buoyant bubbles in M87. ApJ 554(1), 261–273 (2001). https://doi.org/10.1086/321357

    Article  ADS  Google Scholar 

  • E. Churazov, R. Sunyaev, W. Forman, H. Böhringer, Cooling flows as a calorimeter of active galactic nucleus mechanical power. MNRAS 332(3), 729–734 (2002). https://doi.org/10.1046/j.1365-8711.2002.05332.x

    Article  ADS  Google Scholar 

  • E. Churazov, S. Sazonov, R. Sunyaev, W. Forman, C. Jones, H. Böhringer, Supermassive black holes in elliptical galaxies: switching from very bright to very dim. MNRAS 363(1), L91–L95 (2005). https://doi.org/10.1111/j.1745-3933.2005.00093.x

    Article  ADS  Google Scholar 

  • L. Ciotti, J.P. Ostriker, Cooling flows and quasars: different aspects of the same phenomenon? I. Concepts. ApJ 487(2), L105–L108 (1997). https://doi.org/10.1086/310902

    Google Scholar 

  • L. Ciotti, J.P. Ostriker, D. Proga, Feedback from central black holes in elliptical galaxies. I. Models with either radiative or mechanical feedback but not both. ApJ 699(1), 89–104 (2009). https://doi.org/10.1088/0004-637X/699/1/89

    Google Scholar 

  • S. Corbel, M.A. Nowak, R.P. Fender, A.K. Tzioumis, S. Markoff, Radio/X-ray correlation in the low/hard state of GX 339-4. A&A 400, 1007–1012 (2003). https://doi.org/10.1051/0004-6361:20030090

    Article  ADS  Google Scholar 

  • C.S. Crawford, S.W. Allen, H. Ebeling, A.C. Edge, A.C. Fabian, The ROSAT brightest cluster sample – III. Optical spectra of the central cluster galaxies. MNRAS 306(4), 857–896 (1999). https://doi.org/10.1046/j.1365-8711.1999.02583.x

    Google Scholar 

  • D.J. Croton, V. Springel, S.D.M. White, G. De Lucia, C.S. Frenk, L. Gao, A. Jenkins, G. Kauffmann, J.F. Navarro, N. Yoshida, The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. MNRAS 365(1), 11–28 (2006). https://doi.org/10.1111/j.1365-2966.2005.09675.x

    Article  ADS  Google Scholar 

  • R. Davé, D. Anglés-Alcázar, D. Narayanan, Q. Li, M.H. Rafieferantsoa, S. Appleby, SIMBA: cosmological simulations with black hole growth and feedback. MNRAS 486(2), 2827–2849 (2019). https://doi.org/10.1093/mnras/stz937

    Article  ADS  Google Scholar 

  • T.J. Dennis, B.D.G. Chandran, Turbulent heating of galaxy-cluster plasmas. ApJ 622(1), 205–216 (2005). https://doi.org/10.1086/427424

    Article  ADS  Google Scholar 

  • M. Donahue, T. Connor, G.M. Voit, M. Postman, Observations of Lyα and O VI: signatures of cooling and star formation in a massive central cluster galaxy. ApJ 835(2), 216 (2017). https://doi.org/10.3847/1538-4357/835/2/216

  • R. Dong, J.M. Stone, Buoyant bubbles in intracluster gas: effects of magnetic fields and anisotropic viscosity. ApJ 704(2), 1309–1320 (2009). https://doi.org/10.1088/0004-637X/704/2/1309

    Article  ADS  Google Scholar 

  • Y. Dubois, J. Devriendt, A. Slyz, R. Teyssier, Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations. MNRAS 420(3), 2662–2683 (2012). https://doi.org/10.1111/j.1365-2966.2011.20236.x

    Article  ADS  Google Scholar 

  • Y. Dubois, S. Peirani, C. Pichon, J. Devriendt, R. Gavazzi, C. Welker, M. Volonteri, The HORIZON-AGN simulation: morphological diversity of galaxies promoted by AGN feedback. MNRAS 463(4), 3948–3964 (2016). https://doi.org/10.1093/mnras/stw2265

    Article  ADS  Google Scholar 

  • R.J.H. Dunn, A.C. Fabian, Investigating AGN heating in a sample of nearby clusters. MNRAS 373(3), 959–971 (2006). https://doi.org/10.1111/j.1365-2966.2006.11080.x

    Article  ADS  Google Scholar 

  • R.J.H. Dunn, A.C. Fabian, Investigating heating and cooling in the BCS and B55 cluster samples. MNRAS 385(2), 757–768 (2008). https://doi.org/10.1111/j.1365-2966.2008.12898.x

    Article  ADS  Google Scholar 

  • L.J. Dursi, C. Pfrommer, Dra** of cluster magnetic fields over bullets and bubbles—morphology and dynamic effects. ApJ 677(2), 993–1018 (2008). https://doi.org/10.1086/529371

    Article  ADS  Google Scholar 

  • K. Ehlert, R. Weinberger, C. Pfrommer, R. Pakmor, V. Springel, Simulations of the dynamics of magnetized jets and cosmic rays in galaxy clusters. MNRAS 481(3), 2878–2900 (2018). https://doi.org/10.1093/mnras/sty2397

    Article  ADS  Google Scholar 

  • A.C. Fabian, Cooling flows in clusters of galaxies. ARA&A 32, 277–318 (1994). https://doi.org/10.1146/annurev.aa.32.090194.001425

    Article  ADS  Google Scholar 

  • A.C. Fabian, The obscured growth of massive black holes. MNRAS 308(4), L39–L43 (1999). https://doi.org/10.1046/j.1365-8711.1999.03017.x

    Article  ADS  Google Scholar 

  • A.C. Fabian, Observational evidence of active galactic nuclei feedback. ARA&A 50, 455–489 (2012). https://doi.org/10.1146/annurev-astro-081811-125521

    Article  ADS  Google Scholar 

  • A.C. Fabian, E.M. Hu, L.L. Cowie, J. Grindlay, The distribution and morphology of X-ray emitting gas in the core of the Perseus cluster. ApJ 248, 47–54 (1981). https://doi.org/10.1086/159128

    Article  ADS  Google Scholar 

  • A.C. Fabian, J.S. Sanders, S.W. Allen, C.S. Crawford, K. Iwasawa, R.M. Johnstone, R.W. Schmidt, G.B. Taylor, A deep Chandra observation of the Perseus cluster: shocks and ripples. MNRAS 344(3), L43–L47 (2003). https://doi.org/10.1046/j.1365-8711.2003.06902.x

    Article  ADS  Google Scholar 

  • A.C. Fabian, J.S. Sanders, G.B. Taylor, S.W. Allen, C.S. Crawford, R.M. Johnstone, K. Iwasawa, A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. MNRAS 366(2), 417–428 (2006). https://doi.org/10.1111/j.1365-2966.2005.09896.x

    Article  ADS  Google Scholar 

  • A.C. Fabian, R.M. Johnstone, J.S. Sanders, C.J. Conselice, C.S. Crawford, J.S. Gallagher III, E. Zweibel, Magnetic support of the optical emission line filaments in NGC 1275. Nature 454(7207), 968–970 (2008). https://doi.org/10.1038/nature07169

    Article  ADS  Google Scholar 

  • A.C. Fabian, S.A. Walker, H.R. Russell, C. Pinto, J.S. Sanders, C.S. Reynolds, Do sound waves transport the AGN energy in the Perseus cluster? MNRAS 464(1), L1–L5 (2017). https://doi.org/10.1093/mnrasl/slw170

    Article  ADS  Google Scholar 

  • R.P. Fender, T.M. Belloni, E. Gallo, Towards a unified model for black hole X-ray binary jets. MNRAS 355(4), 1105–1118 (2004). https://doi.org/10.1111/j.1365-2966.2004.08384.x

    Article  ADS  Google Scholar 

  • A. Finoguenov, M. Ruszkowski, C. Jones, M. Brüggen, A. Vikhlinin, E. Mandel, In-depth Chandra study of the AGN feedback in virgo elliptical galaxy M84. ApJ 686(2), 911–917 (2008). https://doi.org/10.1086/591662

    Article  ADS  Google Scholar 

  • W. Forman, E. Kellogg, H. Gursky, H. Tananbaum, R. Giacconi, Observations of the extended X-ray sources in the Perseus and Coma clusters from UHURU. ApJ 178, 309–316 (1972). https://doi.org/10.1086/151791

    Article  ADS  Google Scholar 

  • W. Forman, C. Jones, E. Churazov, M. Markevitch, P. Nulsen, A. Vikhlinin, M. Begelman, H. Böhringer, J. Eilek, S. Heinz, R. Kraft, F. Owen, M. Pahre, Filaments, bubbles, and weak shocks in the gaseous atmosphere of M87. ApJ 665(2), 1057–1066 (2007). https://doi.org/10.1086/519480

    Article  ADS  Google Scholar 

  • W. Forman, E. Churazov, C. Jones, S. Heinz, R. Kraft, A. Vikhlinin, Partitioning the outburst energy of a low eddington accretion rate AGN at the center of an elliptical galaxy: the recent 12 Myr history of the supermassive black hole in M87. ApJ 844(2), 122 (2017). https://doi.org/10.3847/1538-4357/aa70e4

  • J. Frank, A. King, D.J. Raine, Accretion Power in Astrophysics, 3rd edn. (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  • S.H. Friedman, S. Heinz, E. Churazov, All curled up: a numerical investigation of shock-bubble interactions and the role of vortices in heating galaxy clusters. ApJ 746(1), 112 (2012). https://doi.org/10.1088/0004-637X/746/1/112

  • Z. Gan, F. Yuan, J.P. Ostriker, L. Ciotti, G.S. Novak, Active galactic nucleus feedback in an isolated elliptical galaxy: the effect of strong radiative feedback in the kinetic mode. ApJ 789(2), 150 (2014). https://doi.org/10.1088/0004-637X/789/2/150

  • M. Gaspari, M. Ruszkowski, S. Peng Oh, Chaotic cold accretion on to black holes. MNRAS 432(4), 3401–3422 (2013). https://doi.org/10.1093/mnras/stt692

    Article  ADS  Google Scholar 

  • M. Gaspari, M. McDonald, S.L. Hamer, F. Brighenti, P. Temi, M. Gendron-Marsolais, J. Hlavacek-Larrondo, A.C. Edge, N. Werner, P. Tozzi, M. Sun, J.M. Stone, G.R. Tremblay, M.T. Hogan, D. Eckert, S. Ettori, H. Yu, V. Biffi, S. Planelles, Shaken snow globes: kinematic tracers of the multiphase condensation cascade in massive galaxies, groups, and clusters. ApJ 854(2), 167 (2018). https://doi.org/10.3847/1538-4357/aaaa1b

  • V. Ghirardini, E. Bulbul, R. Kraft, M. Bayliss, B. Benson, L. Bleem, S. Bocquet, M. Calzadilla, D. Eckert, W. Forman, J.D.R. Da González, G. Khullar, G. Mahler, M. McDonald, Evolution of the thermodynamic properties of clusters of galaxies out to redshift of 1.8. ApJ 910(1), 14 (2021). https://doi.org/10.3847/1538-4357/abc68d

  • S. Giacintucci, M. Markevitch, M. Johnston-Hollitt, D.R. Wik, Q.H.S. Wang, T.E. Clarke, Discovery of a giant radio fossil in the ophiuchus galaxy cluster. ApJ 891(1), 1 (2020). https://doi.org/10.3847/1538-4357/ab6a9d

  • J. Graham, A.C. Fabian, J.S. Sanders, The weak shock in the core of the Perseus cluster. MNRAS 386(1), 278–288 (2008). https://doi.org/10.1111/j.1365-2966.2008.13027.x

    Article  ADS  Google Scholar 

  • S.F. Gull, K.J.E. Northover, Bubble model of extragalactic radio sources. Nature 244(5411), 80–83 (1973). https://doi.org/10.1038/244080a0

    Article  ADS  Google Scholar 

  • F. Guo, The shape of X-ray cavities in galaxy clusters: probing jet properties and viscosity. ApJ 803(1), 48 (2015). https://doi.org/10.1088/0004-637X/803/1/48

  • F. Guo, S.P. Oh, Feedback heating by cosmic rays in clusters of galaxies. MNRAS 384(1), 251–266 (2008). https://doi.org/10.1111/j.1365-2966.2007.12692.x

    Article  ADS  Google Scholar 

  • H. Gursky, E. Kellogg, S. Murray, C. Leong, H. Tananbaum, R. Giacconi, A strong X-ray source in the coma cluster observed by UHURU. ApJ 167, L81 (1971). https://doi.org/10.1086/180765

    Article  ADS  Google Scholar 

  • M. Habouzit, Y. Li, R.S. Somerville, S. Genel, A. Pillepich, M. Volonteri, R. Davé, Y. Rosas-Guevara, S. McAlpine, S. Peirani, L. Hernquist, D. Anglés-Alcázar, A. Reines, R. Bower, Y. Dubois, D. Nelson, C. Pichon, M. Vogelsberger, Supermassive black holes in cosmological simulations I: MBH – M relation and black hole mass function. MNRAS 503(2), 1940–1975 (2021). https://doi.org/10.1093/mnras/stab496

    Article  ADS  Google Scholar 

  • M. Habouzit, R.S. Somerville, Y. Li, S. Genel, J. Aird, D. Anglés-Alcázar, R. Davé, I.Y. Georgiev, S. McAlpine, Y. Rosas-Guevara, Y. Dubois, D. Nelson, E. Banados, L. Hernquist, S. Peirani, M. Vogelsberger, Supermassive black holes in cosmological simulations – II: the AGN population and predictions for upcoming X-ray missions. MNRAS 509(2), 3015–3042 (2022). https://doi.org/10.1093/mnras/stab3147

    Article  ADS  Google Scholar 

  • M.J. Hardcastle, D.A. Evans, J.H. Croston, Hot and cold gas accretion and feedback in radio-loud active galaxies. MNRAS 376(4), 1849–1856 (2007). https://doi.org/10.1111/j.1365-2966.2007.11572.x

    Article  ADS  Google Scholar 

  • S. Heinz, E. Churazov, Heating the bubbly gas of galaxy clusters with weak shocks and sound waves. ApJ 634(2), L141–L144 (2005). https://doi.org/10.1086/498301

    Article  ADS  Google Scholar 

  • S. Heinz, C.S. Reynolds, M.C. Begelman, X-ray signatures of evolving radio galaxies. ApJ 501(1), 126–136 (1998). https://doi.org/10.1086/305807

    Article  ADS  Google Scholar 

  • S. Heinz, M. Brüggen, A. Young, E. Levesque, The answer is blowing in the wind: simulating the interaction of jets with dynamic cluster atmospheres. MNRAS 373(1), L65–L69 (2006). https://doi.org/10.1111/j.1745-3933.2006.00243.x

    Article  ADS  Google Scholar 

  • N.A. Henden, E. Puchwein, S. Shen, D. Sijacki, The FABLE simulations: a feedback model for galaxies, groups, and clusters. MNRAS 479(4), 5385–5412 (2018). https://doi.org/10.1093/mnras/sty1780

    Article  ADS  Google Scholar 

  • S. Hillel, N. Soker, Heating the intracluster medium by jet-inflated bubbles. MNRAS 455(2), 2139–2148 (2016a). https://doi.org/10.1093/mnras/stv2483

    Article  ADS  Google Scholar 

  • S. Hillel, N. Soker, Heating the intracluster medium by jet-inflated bubbles. MNRAS 455, 2139–2148 (2016b). https://doi.org/10.1093/mnras/stv2483

    Article  ADS  Google Scholar 

  • S. Hillel, N. Soker, Kinematics of filaments in cooling flow clusters and heating by mixing. ApJ 896(2), 104 (2020). https://doi.org/10.3847/1538-4357/ab9109

  • M. Hirschmann, K. Dolag, A. Saro, L. Bachmann, S. Borgani, A. Burkert, Cosmological simulations of black hole growth: AGN luminosities and downsizing. MNRAS 442(3), 2304–2324 (2014). https://doi.org/10.1093/mnras/stu1023

    Article  ADS  Google Scholar 

  • Hitomi Collaboration, F. Aharonian, H. Akamatsu, F. Akimoto, S.W. Allen, N. Anabuki, L. Angelini, K. Arnaud, M. Audard, H. Awaki, M. Axelsson, A. Bamba, M. Bautz, R. Blandford, L. Brenneman, G.V. Brown, E. Bulbul, E. Cackett, M. Chernyakova, M. Chiao, P. Coppi, E. Costantini, J. de Plaa, J.-W. den Herder, C. Done, T. Dotani, K. Ebisawa, M. Eckart, T. Enoto, Y. Ezoe, A.C. Fabian, C. Ferrigno, A. Foster, R. Fujimoto, Y. Fukazawa, A. Furuzawa, M. Galeazzi, L. Gallo, P. Gandhi, M. Giustini, A. Goldwurm, L. Gu, M. Guainazzi, Y. Haba, K. Hagino, K. Hamaguchi, I. Harrus, I. Hatsukade, K. Hayashi, T. Hayashi, K. Hayashida, J. Hiraga, A. Hornschemeier, A. Hoshino, J. Hughes, R. Iizuka, H. Inoue, Y. Inoue, K. Ishibashi, M. Ishida, K. Ishikawa, Y. Ishisaki, M. Itoh, N. Iyomoto, J. Kaastra, T. Kallman, T. Kamae, E. Kara, J. Kataoka, S. Katsuda, J. Katsuta, M. Kawaharada, N. Kawai, R. Kelley, D. Khangulyan, C. Kilbourne, A. King, T. Kitaguchi, S. Kitamoto, T. Kitayama, T. Kohmura, M. Kokubun, S. Koyama, K. Koyama, P. Kretschmar, H. Krimm, A. Kubota, H. Kunieda, P. Laurent, F. Lebrun, S.-H. Lee, M. Leutenegger, O. Limousin, M. Loewenstein, K.S. Long, D. Lumb, G. Madejski, Y. Maeda, D. Maier, K. Makishima, M. Markevitch, H. Matsumoto, K. Matsushita, D. McCammon, B. McNamara, M. Mehdipour, E. Miller, J. Miller, S. Mineshige, K. Mitsuda, I. Mitsuishi, T. Miyazawa, T. Mizuno, H. Mori, K. Mori, H. Moseley, K. Mukai, H. Murakami, T. Murakami, R. Mushotzky, R. Nagino, T. Nakagawa, H. Nakajima, T. Nakamori, T. Nakano, S. Nakashima, K. Nakazawa, M. Nobukawa, H. Noda, M. Nomachi, S. O’Dell, H. Odaka, T. Ohashi, M. Ohno, T. Okajima, N. Ota, M. Ozaki, F. Paerels, S. Paltani, A. Parmar, R. Petre, C. Pinto, M. Pohl, F.S. Porter, K. Pottschmidt, B. Ramsey, C. Reynolds, H. Russell, S. Safi-Harb, S. Saito, K. Sakai, H. Sameshima, G. Sato, K. Sato, R. Sato, M. Sawada, N. Schartel, P. Serlemitsos, H. Seta, M. Shidatsu, A. Simionescu, R. Smith, Y. Soong, L. Stawarz, Y. Sugawara, S. Sugita, A. Szymkowiak, H. Tajima, H. Takahashi, T. Takahashi, S. Takeda, Y. Takei, T. Tamagawa, K. Tamura, T. Tamura, T. Tanaka, Y. Tanaka, Y. Tanaka, M. Tashiro, Y. Tawara, Y. Terada, Y. Terashima, F. Tombesi, H. Tomida, Y. Tsuboi, M. Tsujimoto, H. Tsunemi, T. Tsuru, H. Uchida, H. Uchiyama, Y. Uchiyama, S. Ueda, Y. Ueda, S. Ueno, S. Uno, M. Urry, E. Ursino, C. de Vries, S. Watanabe, N. Werner, D. Wik, D. Wilkins, B. Williams, S. Yamada, H. Yamaguchi, K. Yamaoka, N.Y. Yamasaki, M. Yamauchi, S. Yamauchi, T. Yaqoob, Y. Yatsu, D. Yonetoku, A. Yoshida, T. Yuasa, I. Zhuravleva, A. Zoghbi, The quiescent intracluster medium in the core of the Perseus cluster. Nature 535(7610), 117–121 (2016). https://doi.org/10.1038/nature18627

  • J. Hlavacek-Larrondo, A.C. Fabian, Investigating a sample of strong cool core, highly luminous clusters with radiatively inefficient nuclei. MNRAS 413(1), 313–321 (2011). https://doi.org/10.1111/j.1365-2966.2010.18138.x

    Article  ADS  Google Scholar 

  • J. Hlavacek-Larrondo, A.C. Fabian, A.C. Edge, M.T. Hogan, On the hunt for ultramassive black holes in brightest cluster galaxies. MNRAS 424(1), 224–231 (2012a). https://doi.org/10.1111/j.1365-2966.2012.21187.x

    Article  ADS  Google Scholar 

  • J. Hlavacek-Larrondo, A.C. Fabian, A.C. Edge, H. Ebeling, J.S. Sanders, M.T. Hogan, G.B. Taylor, Extreme AGN feedback in the MAssive Cluster Survey: a detailed study of X-ray cavities at z>0.3. MNRAS 421(2), 1360–1384 (2012b). https://doi.org/10.1111/j.1365-2966.2011.20405.x

  • J. Hlavacek-Larrondo, S.W. Allen, G.B. Taylor, A.C. Fabian, R.E.A. Canning, N. Werner, J.S. Sanders, C.K. Grimes, S. Ehlert, A. von der Linden, Probing the extreme realm of active galactic nucleus feedback in the massive galaxy cluster, RX J1532.9+3021. ApJ 777(2), 163 (2013a). https://doi.org/10.1088/0004-637X/777/2/163

  • J. Hlavacek-Larrondo, A.C. Fabian, A.C. Edge, H. Ebeling, S.W. Allen, J.S. Sanders, G.B. Taylor, The rapid evolution of AGN feedback in brightest cluster galaxies: switching from quasar-mode to radio-mode feedback. MNRAS 431(2), 1638–1658 (2013b). https://doi.org/10.1093/mnras/stt283

    Article  ADS  Google Scholar 

  • J. Hlavacek-Larrondo, M. McDonald, B.A. Benson, W.R. Forman, S.W. Allen, L.E. Bleem, M.L.N. Ashby, S. Bocquet, M. Brodwin, J.P. Dietrich, C. Jones, J. Liu, C.L. Reichardt, B.R. Saliwanchik, A. Saro, T. Schrabback, J. Song, B. Stalder, A. Vikhlinin, A. Zenteno, X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: tracing the evolution of AGN feedback in clusters of galaxies out to z=1.2. ApJ 805(1), 35 (2015). https://doi.org/10.1088/0004-637X/805/1/35

  • J. Hlavacek-Larrondo, C.L. Rhea, T. Webb, M. McDonald, A. Muzzin, G. Wilson, K. Finner, F. Valin, N. Bonaventura, M. Cooper, A.C. Fabian, M.L. Gendron-Marsolais, M.J. Jee, C. Lidman, M. Mezcua, A. Noble, H.R. Russell, J. Surace, A. Trudeau, H.K.C. Yee, Evidence of runaway gas cooling in the absence of supermassive black hole feedback at the epoch of cluster formation. ApJ 898(2), L50 (2020). https://doi.org/10.3847/2041-8213/ab9ca5

  • P.F. Hopkins, G.T. Richards, L. Hernquist, An observational determination of the bolometric quasar luminosity function. ApJ 654(2), 731–753 (2007). https://doi.org/10.1086/509629

    Article  ADS  Google Scholar 

  • H. Hu, Y. Qiu, M.-L. Gendron-Marsolais, T. Bogdanovic, J. Hlavacek-Larrondo, L.C. Ho, K. Inayoshi, B.R. McNamara, Signature of supersonic turbulence in galaxy clusters. ar**v e-prints, art. ar**v:2203.04977 (2022)

    Google Scholar 

  • S. Ichimaru, Bimodal behavior of accretion disks: theory and application to Cygnus X-1 transitions. ApJ 214, 840–855 (1977). https://doi.org/10.1086/155314

    Article  ADS  Google Scholar 

  • S. Jacob, C. Pfrommer, Cosmic ray heating in cool core clusters – I. Diversity of steady state solutions. MNRAS 467(2), 1449–1477 (2017). https://doi.org/10.1093/mnras/stx131

    Google Scholar 

  • S. Ji, S.P. Oh, M. McCourt, The impact of magnetic fields on thermal instability. MNRAS 476(1), 852–867 (2018). https://doi.org/10.1093/mnras/sty293

    Article  ADS  Google Scholar 

  • C. Jones, W. Forman, The structure of clusters of galaxies observed with Einstein. ApJ 276, 38–55 (1984). https://doi.org/10.1086/161591

    Article  ADS  Google Scholar 

  • S.K. Kadam, S.S. Sonkamble, P.K. Pawar, M.K. Patil, Merging cold front and AGN feedback in the peculiar galaxy cluster Abell 2626. MNRAS 484(3), 4113–4126 (2019). https://doi.org/10.1093/mnras/stz144

    Article  ADS  Google Scholar 

  • E. Kellogg, H. Gursky, C. Leong, E. Schreier, H. Tananbaum, R. Giacconi, X-ray observations of the virgo cluster, NGC 5128, and 3c 273 from the UHURU satellite. ApJ 165, L49 (1971). https://doi.org/10.1086/180714

    Article  ADS  Google Scholar 

  • E. Kellogg, H. Gursky, H. Tananbaum, R. Giacconi, K. Pounds, The extended X-ray source at M87. ApJ 174, L65 (1972). https://doi.org/10.1086/180950

    Article  ADS  Google Scholar 

  • A. King, K. Pounds, Powerful outflows and feedback from active galactic nuclei. ARA&A 53, 115–154 (2015). https://doi.org/10.1146/annurev-astro-082214-122316

    Article  ADS  Google Scholar 

  • C.C. Kirkpatrick, M. Gitti, K.W. Cavagnolo, B.R. McNamara, L.P. David, P.E.J. Nulsen, M.W. Wise, Direct evidence for outflow of metal-enriched gas along the radio jets of hydra A. ApJ 707(1), L69–L72 (2009). https://doi.org/10.1088/0004-637X/707/1/L69

    Article  ADS  Google Scholar 

  • C.C. Kirkpatrick, B.R. McNamara, K.W. Cavagnolo, Anisotropic metal-enriched outflows Driven by active galactic nuclei in clusters of galaxies. ApJ 731(2), L23 (2011). https://doi.org/10.1088/2041-8205/731/2/L23

  • E.G. Körding, S. Jester, R. Fender, Measuring the accretion rate and kinetic luminosity functions of supermassive black holes. MNRAS 383(1), 277–288, (2008). https://doi.org/10.1111/j.1365-2966.2007.12529.x

    Article  ADS  Google Scholar 

  • A.V. Kravtsov, S. Borgani, Formation of galaxy clusters. ARA&A 50, 353–409 (2012). https://doi.org/10.1146/annurev-astro-081811-125502

    Article  ADS  Google Scholar 

  • M.W. Kunz, J. Squire, A.A. Schekochihin, E. Quataert, Self-sustaining sound in collisionless, high-β plasma. J. Plasma Phys. 86(6), 905860603 (2020). https://doi.org/10.1017/S0022377820001312

  • A. Kyadampure, n.d. Vagshette, M.K. Patil, X-ray cavities in the G50 bright group-centered Galaxy NGC 5846. Serbian Astron. J. 202, 17–24 (2021). https://doi.org/10.2298/SAJ2102017K

  • S.M. Lea, J. Silk, E. Kellogg, S. Murray, Thermal-bremsstrahlung interpretation of cluster X-ray sources. ApJ 184, L105 (1973). https://doi.org/10.1086/181300

    Article  ADS  Google Scholar 

  • Y. Li, G.L. Bryan, Modeling active galactic nucleus feedback in cool-core clusters: the balance between heating and cooling. ApJ 789, 54 (2014a). https://doi.org/10.1088/0004-637X/789/1/54

    Article  ADS  Google Scholar 

  • Y. Li, G.L. Bryan, Modeling active galactic nucleus feedback in cool-core clusters: the formation of cold clumps. ApJ 789(2), 153 (2014b). https://doi.org/10.1088/0004-637X/789/2/153

  • Y. Li, G.L. Bryan, M. Ruszkowski, G.M. Voit, B.W. O’Shea, M. Donahue, Cooling, AGN feedback, and star formation in simulated cool-core galaxy clusters. ApJ 811(2), 73 (2015). https://doi.org/10.1088/0004-637X/811/2/73

  • Y. Li, M. Ruszkowski, G.L. Bryan, AGN heating in simulated cool-core clusters. ApJ 847(2), 106 (2017). https://doi.org/10.3847/1538-4357/aa88c1

  • Y. Li, M.-L. Gendron-Marsolais, I. Zhuravleva, S. Xu, A. Simionescu, G.R. Tremblay, C. Lochhaas, G.L. Bryan, E. Quataert, N.W. Murray, A. Boselli, J. Hlavacek-Larrondo, Y. Zheng, M. Fossati, M. Li, E. Emsellem, M. Sarzi, L. Arzamasskiy, E.T. Vishniac, Direct detection of black hole-driven turbulence in the centers of galaxy clusters. ApJ 889(1), L1 (2020). https://doi.org/10.3847/2041-8213/ab65c7

  • W. Liu, M. Sun, P.E.J. Nulsen, D.M. Worrall, M. Birkinshaw, C. Sarazin, W.R. Forman, C. Jones, C. Ge, AGN feedback in the FR II galaxy 3C 220.1. MNRAS 492(3), 3156–3168 (2020). https://doi.org/10.1093/mnras/staa005

  • M. Loewenstein, E.G. Zweibel, M.C. Begelman, Cosmic-ray heating of cooling flows: a critical analysis. ApJ 377, 392 (1991). https://doi.org/10.1086/170369

    Article  ADS  Google Scholar 

  • M. Lyutikov, Magnetic dra** of merging cores and radio bubbles in clusters of galaxies. MNRAS 373(1), 73–78 (2006). https://doi.org/10.1111/j.1365-2966.2006.10835.x

    Article  ADS  Google Scholar 

  • I.G. McCarthy, J. Schaye, S. Bird, A.M.C. Le Brun, The BAHAMAS project: calibrated hydrodynamical simulations for large-scale structure cosmology. MNRAS 465(3), 2936–2965 (2017). https://doi.org/10.1093/mnras/stw2792

    Article  ADS  Google Scholar 

  • M. McCourt, P. Sharma, E. Quataert, I.J. Parrish, Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes. MNRAS 419(4), 3319–3337 (2012). https://doi.org/10.1111/j.1365-2966.2011.19972.x

    Article  ADS  Google Scholar 

  • M. McDonald, M. Bayliss, B.A. Benson, R.J. Foley, J. Ruel, P. Sullivan, S. Veilleux, K.A. Aird, M.L.N. Ashby, M. Bautz, G. Bazin, L.E. Bleem, M. Brodwin, J.E. Carlstrom, C.L. Chang, H.M. Cho, A. Clocchiatti, T.M. Crawford, A.T. Crites, T. de Haan, S. Desai, M.A. Dobbs, J.P. Dudley, E. Egami, W.R. Forman, G.P. Garmire, E.M. George, M.D. Gladders, A.H. Gonzalez, N.W. Halverson, N.L. Harrington, F.W. High, G.P. Holder, W.L. Holzapfel, S. Hoover, J.D. Hrubes, C. Jones, M. Joy, R. Keisler, L. Knox, A.T. Lee, E.M. Leitch, J. Liu, M. Lueker, D. Luong-van, A. Mantz, D.P. Marrone, J.J. McMahon, J. Mehl, S.S. Meyer, E.D. Miller, L. Mocanu, J.J. Mohr, T.E. Montroy, S.S. Murray, T. Natoli, S. Padin, T. Plagge, C. Pryke, T.D. Rawle, C.L. Reichardt, A. Rest, M. Rex, J.E. Ruhl, B.R. Saliwanchik, A. Saro, J.T. Sayre, K.K. Schaffer, A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies. Nature 488(7411), 349–352 (2012). https://doi.org/10.1038/nature11379

  • M. McDonald, B. Benson, S. Veilleux, M.W. Bautz, C.L. Reichardt, An HST/WFC3-UVIS view of the starburst in the cool core of the Phoenix cluster. ApJ 765(2), L37 (2013a). https://doi.org/10.1088/2041-8205/765/2/L37

  • M. McDonald, B.A. Benson, A. Vikhlinin, B. Stalder, L.E. Bleem, T. de Haan, H.W. Lin, K.A. Aird, M.L.N. Ashby, M.W. Bautz, M. Bayliss, S. Bocquet, M. Brodwin, J.E. Carlstrom, C.L. Chang, H.M. Cho, A. Clocchiatti, T.M. Crawford, A.T. Crites, S. Desai, M.A. Dobbs, J.P. Dudley, R.J. Foley, W.R. Forman, E.M. George, D. Gettings, M.D. Gladders, A.H. Gonzalez, N.W. Halverson, F.W. High, G.P. Holder, W.L. Holzapfel, S. Hoover, J.D. Hrubes, C. Jones, M. Joy, R. Keisler, L. Knox, A.T. Lee, E.M. Leitch, J. Liu, M. Lueker, D. Luong-Van, A. Mantz, D.P. Marrone, J.J. McMahon, J. Mehl, S.S. Meyer, E.D. Miller, L. Mocanu, J.J. Mohr, T.E. Montroy, S.S. Murray, D. Nurgaliev, S. Padin, T. Plagge, C. Pryke, C.L. Reichardt, A. Rest, J. Ruel, J.E. Ruhl, B.R. Saliwanchik, A. Saro, J.T. Sayre, K.K. Schaffer, E. Shirokoff, J. Song, R. Šuhada, H.G. Spieler, S.A. Stanford, Z. Staniszewski, A.A. Stark, K. Story, A. van Engelen, K. Vanderlinde, J.D. Vieira, R. Williamson, O. Zahn, A. Zenteno, The growth of cool cores and evolution of cooling properties in a sample of 83 galaxy clusters at 0.3 < z < 1.2 selected from the SPT-SZ survey. ApJ 774(1), 23 (2013b). https://doi.org/10.1088/0004-637X/774/1/23

  • M. McDonald, J. Roediger, S. Veilleux, S. Ehlert, HST-COS spectroscopy of the cooling flow in A1795—evidence for inefficient star formation in condensing intracluster gas. ApJ 791(2), L30 (2014a). https://doi.org/10.1088/2041-8205/791/2/L30

  • M. McDonald, B.A. Benson, A. Vikhlinin, K.A. Aird, S.W. Allen, M. Bautz, M. Bayliss, L.E. Bleem, S. Bocquet, M. Brodwin, J.E. Carlstrom, C.L. Chang, H.M. Cho, A. Clocchiatti, T.M. Crawford, A.T. Crites, T. de Haan, M.A. Dobbs, R.J. Foley, W.R. Forman, E.M. George, M.D. Gladders, A.H. Gonzalez, N.W. Halverson, J. Hlavacek-Larrondo, G.P. Holder, W.L. Holzapfel, J.D. Hrubes, C. Jones, R. Keisler, L. Knox, A.T. Lee, E.M. Leitch, J. Liu, M. Lueker, D. Luong-Van, A. Mantz, D.P. Marrone, J.J. McMahon, S.S. Meyer, E.D. Miller, L. Mocanu, J.J. Mohr, S.S. Murray, S. Padin, C. Pryke, C.L. Reichardt, A. Rest, J.E. Ruhl, B.R. Saliwanchik, A. Saro, J.T. Sayre, K.K. Schaffer, E. Shirokoff, H.G. Spieler, B. Stalder, S.A. Stanford, Z. Staniszewski, A.A. Stark, K.T. Story, C.W. Stubbs, K. Vanderlinde, J.D. Vieira, R. Williamson, O. Zahn, The redshift evolution of the mean temperature, pressure, and entropy profiles in 80 SPT-selected galaxy clusters. ApJ 794(1), 67 (2014b). https://doi.org/10.1088/0004-637X/794/1/67

  • M. McDonald, B.R. McNamara, R.J. van Weeren, D.E. Applegate, M. Bayliss, M.W. Bautz, B.A. Benson, J.E. Carlstrom, L.E. Bleem, M. Chatzikos, A.C. Edge, A.C. Fabian, G.P. Garmire, J. Hlavacek-Larrondo, C. Jones-Forman, A.B. Mantz, E.D. Miller, B. Stalder, S. Veilleux, J.A. ZuHone, Deep Chandra, HST-COS, and Megacam observations of the Phoenix cluster: extreme star formation and AGN feedback on hundred kiloparsec scales. ApJ 811(2), 111 (2015). https://doi.org/10.1088/0004-637X/811/2/111.

  • M. McDonald, S.W. Allen, M. Bayliss, B.A. Benson, L.E. Bleem, M. Brodwin, E. Bulbul, J.E. Carlstrom, W.R. Forman, J. Hlavacek-Larrondo, G.P. Garmire, M. Gaspari, M.D. Gladders, A.B. Mantz, S.S. Murray, The remarkable similarity of massive galaxy clusters from z ∼ 0 to z ∼ 1.9. ApJ 843(1), 28 (2017). https://doi.org/10.3847/1538-4357/aa7740

  • M. McDonald, B.R. McNamara, G.M. Voit, M. Bayliss, B.A. Benson, M. Brodwin, R.E.A. Canning, M.K. Florian, G.P. Garmire, M. Gaspari, M.D. Gladders, J. Hlavacek-Larrondo, E. Kara, C.L. Reichardt, H.R. Russell, A. Saro, K. Sharon, T. Somboonpanyakul, G.R. Tremblay, R.J. van Weeren, Anatomy of a cooling flow: the feedback Response to pure cooling in the core of the Phoenix cluster. ApJ 885(1), 63 (2019). https://doi.org/10.3847/1538-4357/ab464c

  • J.C. McKinney, A. Tchekhovskoy, R.D. Blandford, General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. MNRAS 423(4), 3083–3117 (2012). https://doi.org/10.1111/j.1365-2966.2012.21074.x

    Article  ADS  Google Scholar 

  • B.R. McNamara, P.E.J. Nulsen, Heating hot atmospheres with active galactic nuclei. ARA&A 45(1), 117–175 (2007). https://doi.org/10.1146/annurev.astro.45.051806.110625

    Article  ADS  Google Scholar 

  • B.R. McNamara, P.E.J. Nulsen, Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14(5), 055023 (2012). https://doi.org/10.1088/1367-2630/14/5/055023

  • B.R. McNamara, M. Wise, P.E.J. Nulsen, L.P. David, C.L. Sarazin, M. Bautz, M. Markevitch, A. Vikhlinin, W.R. Forman, C. Jones, D.E. Harris, Chandra X-ray observations of the hydra A cluster: an interaction between the radio source and the X-ray-emitting gas. ApJ 534(2), L135–L138 (2000). https://doi.org/10.1086/312662

    Article  ADS  Google Scholar 

  • B.R. McNamara, M.W. Wise, P.E.J. Nulsen, L.P. David, C.L. Carilli, C.L. Sarazin, C.P. O’Dea, J. Houck, M. Donahue, S. Baum, M. Voit, R.W. O’Connell, A. Koekemoer, Discovery of ghost cavities in the X-ray atmosphere of Abell 2597. ApJ 562(2), L149–L152 (2001). https://doi.org/10.1086/338326

    Article  ADS  Google Scholar 

  • B.R. McNamara, P.E.J. Nulsen, M.W. Wise, D.A. Rafferty, C. Carilli, C.L. Sarazin, E.L. Blanton, The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts. Nature 433(7021), 45–47 (2005). https://doi.org/10.1038/nature03202

    Article  ADS  Google Scholar 

  • B.R. McNamara, M. Rohanizadegan, P.E.J. Nulsen, Are radio active galactic nuclei powered by accretion or black hole spin? ApJ 727(1), 39 (2011). https://doi.org/10.1088/0004-637X/727/1/39

    Google Scholar 

  • B.R. McNamara, H.R. Russell, P.E.J. Nulsen, A.C. Edge, N.W. Murray, R.A. Main, A.N. Vantyghem, F. Combes, A.C. Fabian, P. Salome, C.C. Kirkpatrick, S.A. Baum, J.N. Bregman, M. Donahue, E. Egami, S. Hamer, C.P. O’Dea, J.B.R. Oonk, G. Tremblay, G.M. Voit, A 1010 solar mass flow of molecular gas in the A1835 brightest cluster Galaxy. ApJ 785(1), 44 (2014). https://doi.org/10.1088/0004-637X/785/1/44

  • G.R. Meece, G.M. Voit, B.W. O’Shea, Triggering and delivery algorithms for AGN feedback. ApJ 841(2), 133 (2017). https://doi.org/10.3847/1538-4357/aa6fb1

  • A. Merloni, S. Heinz, A synthesis model for AGN evolution: supermassive black holes growth and feedback modes. MNRAS 388(3), 1011–1030 (2008). https://doi.org/10.1111/j.1365-2966.2008.13472.x

    ADS  Google Scholar 

  • A. Merloni, S. Heinz, T. di Matteo, A Fundamental Plane of black hole activity. MNRAS 345(4), 1057–1076 (2003). https://doi.org/10.1046/j.1365-2966.2003.07017.x

    Article  ADS  Google Scholar 

  • M. Mezcua, J. Hlavacek-Larrondo, J. R. Lucey, M. T. Hogan, A. C. Edge, and B. R. McNamara. The most massive black holes on the fundamental plane of black hole accretion. MNRAS 474(1), 1342–1360 (2018). https://doi.org/10.1093/mnras/stx2812

    Article  ADS  Google Scholar 

  • R.J. Mitchell, J.L. Culhane, P.J.N. Davison, J.C. Ives, Ariel 5 observations of the X-ray spectrum of the Perseus cluster. MNRAS 175, 29P–34P (1976). https://doi.org/10.1093/mnras/175.1.29P

    Article  ADS  Google Scholar 

  • R. Mohapatra, M. Jetti, P. Sharma, C. Federrath, Characterizing the turbulent multiphase haloes with periodic box simulations. MNRAS 510(3), 3778–3793 (2022a). https://doi.org/10.1093/mnras/stab3603

    Article  ADS  Google Scholar 

  • R. Mohapatra, M. Jetti, P. Sharma, C. Federrath, Velocity structure functions in multiphase turbulence: interpreting kinematics of Hα filaments in cool-core clusters. MNRAS 510(2), 2327–2343 (2022b). https://doi.org/10.1093/mnras/stab3429

    Article  ADS  Google Scholar 

  • R. Morganti, C.N. Tadhunter, T.A. Oosterloo, Fast neutral outflows in powerful radio galaxies: a major source of feedback in massive galaxies. A&A 444(1), L9–L13 (2005). https://doi.org/10.1051/0004-6361:200500197

    Article  ADS  Google Scholar 

  • A. Muzzin, D. Marchesini, P.G. van Dokkum, I. Labbé, M. Kriek, M. Franx, A near-infrared spectroscopic survey of K-selected galaxies at z˜2.3: comparison of stellar population synthesis codes and constraints from the rest-frame NIR. ApJ 701(2), 1839–1864 (2009). https://doi.org/10.1088/0004-637X/701/2/1839

  • K. Nandra, D. Barret, X. Barcons, A. Fabian, J.-W. den Herder, L. Piro, M. Watson, C. Adami, J. Aird, J.M. Afonso, D. Alexander, C. Argiroffi, L. Amati, M. Arnaud, J.-L. Atteia, M. Audard, C. Badenes, J. Ballet, L. Ballo, A. Bamba, A. Bhardwaj, E. Stefano Battistelli, W. Becker, M. De Becker, E. Behar, S. Bianchi, V. Biffi, L. Bîrzan, F. Bocchino, S. Bogdanov, L. Boirin, T. Boller, S. Borgani, K. Borm, N. Bouché, H. Bourdin, R. Bower, V. Braito, E. Branchini, G. Branduardi-Raymont, J. Bregman, L. Brenneman, M. Brightman, M. Brüggen, J. Buchner, E. Bulbul, M. Brusa, M. Bursa, A. Caccianiga, E. Cackett, S. Campana, N. Cappelluti, M. Cappi, F. Carrera, M. Ceballos, F. Christensen, Y.-H. Chu, E. Churazov, N. Clerc, S. Corbel, A. Corral, A. Comastri, E. Costantini, J. Croston, M. Dadina, A. D’Ai, A. Decourchelle, R.D. Ceca, K. Dennerl, K. Dolag, C. Done, M. Dovciak, J. Drake, D. Eckert, A. Edge, S. Ettori, Y. Ezoe, E. Feigelson, R. Fender, C. Feruglio, A. Finoguenov, F. Fiore, M. Galeazzi, S. Gallagher, P. Gandhi, M. Gaspari, F. Gastaldello, A. Georgakakis, I. Georgantopoulos, M. Gilfanov, M. Gitti, R. Gladstone, R. Goosmann, E. Gosset, N. Grosso, M. Guedel, M. Guerrero, F. Haberl, M. Hardcastle, S. Heinz, A.A. Herrero, A. Hervé, M. Holmstrom, K. Iwasawa, P. Jonker, J. Kaastra, E. Kara, V. Karas, J. Kastner, A. King, D. Kosenko, D. Koutroumpa, R. Kraft, I. Kreykenbohm, R. Lallement, G. Lanzuisi, J. Lee, M. LemoineGoumard, A. Lobban, G. Lodato, L. Lovisari, S. Lotti, I. McCharthy, B. McNamara, A. Maggio, R. Maiolino, B. De Marco, D. de Martino, S. Mateos, G. Matt, B. Maughan, P. Mazzotta, M. Mendez, A. Merloni, G. Micela, M. Miceli, R. Mignani, J. Miller, G. Miniutti, S. Molendi, R. Montez, A. Moretti, C. Motch, Y. Nazé, J. Nevalainen, F. Nicastro, P. Nulsen, T. Ohashi, P. O’Brien, J. Osborne, L. Oskinova, F. Pacaud, F. Paerels, M. Page, I. Papadakis, G. Pareschi, R. Petre, P.-O. Petrucci, E. Piconcelli, I. Pillitteri, C. Pinto, J. de Plaa, E. Pointecouteau, T. Ponman, G. Ponti, D. Porquet, K. Pounds, G. Pratt, P. Predehl, D. Proga, D. Psaltis, D. Rafferty, M. Ramos-Ceja, P. Ranalli, E. Rasia, A. Rau, G. Rauw, N. Rea, A. Read, J. Reeves, T. Reiprich, M. Renaud, C. Reynolds, G. Risaliti, J. Rodriguez, P.R. Hidalgo, M. Roncarelli, D. Rosario, M. Rossetti, A. Rozanska, E. Rovilos, R. Salvaterra, M. Salvato, T. Di Salvo, J. Sanders, J. Sanz-Forcada, K. Schawinski, J. Schaye, A. Schwope, S. Sciortino, P. Severgnini, F. Shankar, D. Sijacki, S. Sim, C. Schmid, R. Smith, A. Steiner, B. Stelzer, G. Stewart, T. Strohmayer, L. Strüder, M. Sun, Y. Takei, V. Tatischeff, A. Tiengo, F. Tombesi, G. Trinchieri, T.G. Tsuru, A. Ud-Doula, E. Ursino, L. Valencic, E. Vanzella, S. Vaughan, C. Vignali, J. Vink, F. Vito, M. Volonteri, D. Wang, N. Webb, R. Willingale, J. Wilms, M. Wise, D. Worrall, A. Young, L. Zampieri, J.I. Zand, S. Zane, A. Zezas, Y. Zhang, I. Zhuravleva, The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission. ar**v e-prints, art. ar**v:1306.2307 (2013)

    Google Scholar 

  • R. Narayan, A.C. Fabian, Bondi flow from a slowly rotating hot atmosphere. MNRAS 415(4), 3721–3730 (2011). https://doi.org/10.1111/j.1365-2966.2011.18987.x

    Article  ADS  Google Scholar 

  • R. Narayan, I. Yi, Advection-dominated accretion: a self-similar solution. ApJ 428, L13 (1994). https://doi.org/10.1086/187381

    Article  ADS  Google Scholar 

  • P.E.J. Nulsen, D.C. Hambrick, B.R. McNamara, D. Rafferty, L. Birzan, M.W. Wise, L.P. David, The powerful outburst in hercules A. ApJ 625(1), L9–L12 (2005a). https://doi.org/10.1086/430945

    Article  ADS  Google Scholar 

  • P.E.J. Nulsen, B.R. McNamara, M.W. Wise, L.P. David, The cluster-scale AGN outburst in hydra A. ApJ 628(2), 629–636, (2005b). https://doi.org/10.1086/430845

    Article  ADS  Google Scholar 

  • P. Nulsen, C. Jones, W. Forman, E. Churazov, B. McNamara, L. David, S. Murray, Radio mode outbursts in giant elliptical galaxies, in The Monster’s Fiery Breath: Feedback in Galaxies, Groups, and Clusters, ed. by S. Heinz, E. Wilcots. American Institute of Physics Conference Series, vol 1201 (2009), pp. 198–201. https://doi.org/10.1063/1.3293033

  • H. Omma, J. Binney, G. Bryan, A. Slyz, Heating cooling flows with jets. MNRAS 348(4), 1105–1119 (2004). https://doi.org/10.1111/j.1365-2966.2004.07382.x

    Article  ADS  Google Scholar 

  • B.D. Oppenheimer, J.J. Davies, R.A. Crain, N.A. Wijers, J. Schaye, J.K. Werk, J.N. Burchett, J.W. Trayford, R. Horton, Feedback from supermassive black holes transforms centrals into passive galaxies by ejecting circumgalactic gas. MNRAS 491(2), 2939–2952 (2020). https://doi.org/10.1093/mnras/stz3124

    Article  ADS  Google Scholar 

  • E. O’Sullivan, S. Giacintucci, A. Babul, S. Raychaudhury, T. Venturi, C. Bildfell, A. Mahdavi, J.B.R. Oonk, N. Murray, H. Hoekstra, M. Donahue, A Giant Metrewave Radio Telescope/Chandra view of IRAS 09104+4109: a type 2 QSO in a cooling flow. MNRAS 424(4), 2971–2993 (2012). https://doi.org/10.1111/j.1365-2966.2012.21459.x

    Article  ADS  Google Scholar 

  • E.K. Panagoulia, A.C. Fabian, J.S. Sanders, J. Hlavacek-Larrondo, A volume-limited sample of X-ray galaxy groups and clusters – II. X-ray cavity dynamics. MNRAS 444(2), 1236–1259 (2014). https://doi.org/10.1093/mnras/stu1499

    Google Scholar 

  • M.B. Pandge, n.d. Vagshette, S.S. Sonkamble, M.K. Patil, Investigation of X-ray cavities in the cooling flow system Abell 1991. Ap&SS 345(1), 183–193 (2013). https://doi.org/10.1007/s10509-013-1366-9

  • M.B. Pandge, S.S. Sonkamble, V. Parekh, P. Dabhade, A. Parmar, M.K. Patil, S. Raychaudhury, AGN feedback in galaxy groups: a detailed study of X-ray features and diffuse radio emission in IC 1262. ApJ 870(2) 62 (2019). https://doi.org/10.3847/1538-4357/aaf105

  • M.B. Pandge, B. Sebastian, R. Seth, S. Raychaudhury, A detailed study of X-ray cavities in the intracluster environment of the cool core cluster Abell 3017. MNRAS 504(2), 1644–1656 (2021). https://doi.org/10.1093/mnras/stab384

    Article  ADS  Google Scholar 

  • I.J. Parrish, E. Quataert, P. Sharma, Anisotropic thermal conduction and the cooling flow problem in galaxy clusters. ApJ 703(1), 96–108 (2009). https://doi.org/10.1088/0004-637X/703/1/96

    Article  ADS  Google Scholar 

  • A. Pedlar, H.S. Ghataure, R.D. Davies, B.A. Harrison, R. Perley, P.C. Crane, S.W. Unger, The radio structure of NGC 1275. MNRAS 246, 477 (1990)

    ADS  Google Scholar 

  • J.R. Peterson, A.C. Fabian, X-ray spectroscopy of cooling clusters. Phys. Rep. 427(1), 1–39 (2006). https://doi.org/10.1016/j.physrep.2005.12.007

    Article  ADS  Google Scholar 

  • C. Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi, and H.E.S.S. ApJ 779(1), 10 (2013). https://doi.org/10.1088/0004-637X/779/1/10

  • E. Piconcelli, E. Jimenez-Bailón, M. Guainazzi, N. Schartel, P.M. Rodríguez-Pascual, M. Santos-Lleó, The XMM-Newton view of PG quasars. I. X-ray continuum and absorption. A&A 432(1), 15–30 (2005). https://doi.org/10.1051/0004-6361:20041621

    Google Scholar 

  • A. Pillepich, D. Nelson, L. Hernquist, V. Springel, R. Pakmor, P. Torrey, R. Weinberger, S. Genel, J.P. Naiman, F. Marinacci, M. Vogelsberger, First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. MNRAS 475(1), 648–675 (2018). https://doi.org/10.1093/mnras/stx3112

    Article  ADS  Google Scholar 

  • F. Pizzolato, N. Soker, On the nature of feedback heating in cooling flow clusters. ApJ 632(2), 821–830 (2005). https://doi.org/10.1086/444344

    Article  ADS  Google Scholar 

  • F. Pizzolato, N. Soker, Solving the angular momentum problem in the cold feedback mechanism of cooling flows. MNRAS 408(2), 961–974 (2010). https://doi.org/10.1111/j.1365-2966.2010.17156.x

    Article  ADS  Google Scholar 

  • D. Prasad, P. Sharma, A. Babul, Cool core cycles: cold gas and AGN jet feedback in cluster cores. ApJ 811, 108 (2015). https://doi.org/10.1088/0004-637X/811/2/108

    Article  ADS  Google Scholar 

  • D. Prasad, P. Sharma, A. Babul, AGN jet-driven stochastic cold accretion in cluster cores. MNRAS 471(2), 1531–1542 (2017). https://doi.org/10.1093/mnras/stx1698

    Article  ADS  Google Scholar 

  • D. Prasad, P. Sharma, A. Babul, Cool-core clusters: the role of BCG, star formation, and AGN-driven turbulence. ApJ 863(1), 62 (2018). https://doi.org/10.3847/1538-4357/aacce8

  • M. Prasow-Émond, J. Hlavacek-Larrondo, C.L. Rhea, M. Latulippe, M.L. Gendron-Marsolais, A. Richard-Laferrière, J.S. Sanders, A.C. Edge, S.W. Allen, A. Mantz, A. von der Linden, A multiwavelength study of the cool core cluster MACS J1447.4+0827. AJ 160(3), 103 (2020). https://doi.org/10.3847/1538-3881/ab9ff3

  • D. Proga, J.M. Stone, T.R. Kallman, Dynamics of line-driven disk winds in active galactic nuclei. ApJ 543(2), 686–696 (2000). https://doi.org/10.1086/317154

    Article  ADS  Google Scholar 

  • Y. Qiu, T. Bogdanović, Y. Li, K.H. Park, J.H. Wise, The interplay of kinetic and radiative feedback in galaxy clusters. ApJ 877(1), 47 (2019). https://doi.org/10.3847/1538-4357/ab18fd

  • Y. Qiu, T. Bogdanović, Y. Li, M. McDonald, B.R. McNamara, The formation of dusty cold gas filaments from galaxy cluster simulations. Nat. Astron. 4, 900–906 (2020). https://doi.org/10.1038/s41550-020-1090-7

    Article  ADS  Google Scholar 

  • E. Quataert, Buoyancy instabilities in weakly magnetized low-collisionality plasmas. ApJ 673(2), 758–762 (2008). https://doi.org/10.1086/525248

    Article  ADS  Google Scholar 

  • D.A. Rafferty, B.R. McNamara, P.E.J. Nulsen, M.W. Wise, The feedback-regulated growth of black holes and bulges through gas accretion and starbursts in cluster central dominant galaxies. ApJ 652(1), 216–231 (2006). https://doi.org/10.1086/507672

    Article  ADS  Google Scholar 

  • S.W. Randall, P.E.J. Nulsen, C. Jones, W.R. Forman, E. Bulbul, T.E. Clarke, R. Kraft, E.L. Blanton, L. David, N. Werner, M. Sun, M. Donahue, S. Giacintucci, A. Simionescu, A very deep Chandra observation of the galaxy group NGC 5813: AGN shocks, feedback, and outburst history. ApJ 805(2), 112 (2015). https://doi.org/10.1088/0004-637X/805/2/112

  • E. Rasia, S. Borgani, G. Murante, S. Planelles, A.M. Beck, V. Biffi, C. Ragone-Figueroa, G.L. Granato, L.K. Steinborn, K. Dolag, Cool core clusters from cosmological simulations. ApJ 813(1), L17 (2015). https://doi.org/10.1088/2041-8205/813/1/L17

  • P. Rebusco, E. Churazov, H. Böhringer, W. Forman, Impact of stochastic gas motions on galaxy cluster abundance profiles. MNRAS 359(3), 1041–1048 (2005). https://doi.org/10.1111/j.1365-2966.2005.08965.x

    Article  ADS  Google Scholar 

  • P. Rebusco, E. Churazov, H. Böhringer, W. Forman, Effect of turbulent diffusion on iron abundance profiles. MNRAS 372(4), 1840–1850 (2006). https://doi.org/10.1111/j.1365-2966.2006. 10977.x

    Article  ADS  Google Scholar 

  • M.J. Rees, J.P. Ostriker, Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters. MNRAS 179, 541–559 (1977). https://doi.org/10.1093/mnras/179.4.541

    Article  ADS  Google Scholar 

  • Y. Revaz, F. Combes, P. Salomé, Formation of cold filaments in cooling flow clusters. A&A 477(3), L33–L36 (2008). https://doi.org/10.1051/0004-6361:20078915

    Article  ADS  Google Scholar 

  • C.S. Reynolds, S. Heinz, M.C. Begelman, Shocks and sonic booms in the intracluster medium: X-ray shells and radio galaxy activity. ApJ 549(2), L179–L182 (2001). https://doi.org/10.1086/319159

    Article  ADS  Google Scholar 

  • C.S. Reynolds, S. Heinz, M.C. Begelman, The hydrodynamics of dead radio galaxies. MNRAS 332(2), 271–282 (2002). https://doi.org/10.1046/j.1365-8711.2002.04724.x

    Article  ADS  Google Scholar 

  • C.S. Reynolds, S.A. Balbus, A.A. Schekochihin, Inefficient driving of bulk turbulence by active galactic nuclei in a hydrodynamic model of the intracluster medium. ApJ 815(1), 41 (2015). https://doi.org/10.1088/0004-637X/815/1/41

  • D.S.N. Rupke, S. Veilleux, Integral field spectroscopy of massive, kiloparsec-scale outflows in the infrared-luminous QSO Mrk 231. ApJ 729(2), L27 (2011). https://doi.org/10.1088/2041-8205/729/2/L27

  • H.R. Russell, A.C. Fabian, J.S. Sanders, R.M. Johnstone, K.M. Blundell, W.N. Brandt, C.S. Crawford, The X-ray luminous cluster underlying the bright radio-quiet quasar H1821+643. MNRAS 402(3), 1561–1579 (2010). https://doi.org/10.1111/j.1365-2966.2009.16027.x

    Article  ADS  Google Scholar 

  • H.R. Russell, B.R. McNamara, A.C. Edge, M.T. Hogan, R.A. Main, A.N. Vantyghem, Radiative efficiency, variability and Bondi accretion on to massive black holes: the transition from radio AGN to quasars in brightest cluster galaxies. MNRAS 432(1), 530–553 (2013). https://doi.org/10.1093/mnras/stt490

    Article  ADS  Google Scholar 

  • H.R. Russell, B.R. McNamara, A.C. Edge, P.E.J. Nulsen, R.A. Main, A.N. Vantyghem, F. Combes, A.C. Fabian, N. Murray, P. Salomé, R.J. Wilman, S.A. Baum, M. Donahue, C.P. O’Dea, J.B.R. Oonk, G.R. Tremblay, G.M. Voit, Massive molecular gas flows in the A1664 brightest cluster galaxy. ApJ 784(1), 78 (2014). https://doi.org/10.1088/0004-637X/784/1/78

  • H.R. Russell, A.C. Fabian, B.R. McNamara, A.E. Broderick, Inside the Bondi radius of M87. MNRAS 451(1), 588–600 (2015). https://doi.org/10.1093/mnras/stv954

    Article  ADS  Google Scholar 

  • M. Ruszkowski, M. Brüggen, M.C. Begelman, Cluster heating by viscous dissipation of sound waves. ApJ 611(1), 158–163 (2004). https://doi.org/10.1086/422158

    Article  ADS  Google Scholar 

  • M. Ruszkowski, T.A. Enßlin, M. Brüggen, S. Heinz, C. Pfrommer, Impact of tangled magnetic fields on fossil radio bubbles. MNRAS 378(2), 662–672 (2007). https://doi.org/10.1111/j.1365-2966.2007.11801.x

    Article  ADS  Google Scholar 

  • M. Ruszkowski, H.Y.K. Yang, C.S. Reynolds, Cosmic-ray feedback heating of the intracluster medium. ApJ 844(1), 13 (2017). https://doi.org/10.3847/1538-4357/aa79f8

  • J.S. Sanders, A.C. Fabian, G.B. Taylor, H.R. Russell, K.M. Blundell, R.E.A. Canning, J. Hlavacek-Larrondo, S.A. Walker, C.K. Grimes, A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies. MNRAS 457(1), 82–109 (2016). https://doi.org/10.1093/mnras/stv2972

    Article  ADS  Google Scholar 

  • S.Y. Sazonov, J.P. Ostriker, R.A. Sunyaev, Quasars: the characteristic spectrum and the induced radiative heating. MNRAS 347(1), 144–156 (2004). https://doi.org/10.1111/j.1365-2966.2004.07184.x

    Article  ADS  Google Scholar 

  • S.Y. Sazonov, J.P. Ostriker, L. Ciotti, R.A. Sunyaev, Radiative feedback from quasars and the growth of massive black holes in stellar spheroids. MNRAS 358(1), 168–180 (2005). https://doi.org/10.1111/j.1365-2966.2005.08763.x

    Article  ADS  Google Scholar 

  • J. Schaye, R.A. Crain, R.G. Bower, M. Furlong, M. Schaller, T. Theuns, C. Dalla Vecchia, C.S. Frenk, I.G. McCarthy, J.C. Helly, A. Jenkins, Y.M. Rosas-Guevara, S.D.M. White, M. Baes, C.M. Booth, P. Camps, J.F. Navarro, Y. Qu, A. Rahmati, T. Sawala, P.A. Thomas, J. Trayford, The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446(1), 521–554 (2015). https://doi.org/10.1093/mnras/stu2058

    Article  ADS  Google Scholar 

  • S. Shabala, P. Alexander, Radio source feedback in galaxy evolution. ApJ 699(1), 525–538 (2009). https://doi.org/10.1088/0004-637X/699/1/525

    Article  ADS  Google Scholar 

  • N.I. Shakura, R.A. Sunyaev, Reprint of 1973A&A....24..337S. Black holes in binary systems. Observational appearance. A&A 500, 33–51 (1973)

    Google Scholar 

  • P. Sharma, I.J. Parrish, E. Quataert, Thermal instability with anisotropic thermal conduction and adiabatic cosmic rays: implications for cold filaments in galaxy clusters. ApJ 720(1), 652–665 (2010). https://doi.org/10.1088/0004-637X/720/1/652

    Article  ADS  Google Scholar 

  • P. Sharma, M. McCourt, E. Quataert, I.J. Parrish, Thermal instability and the feedback regulation of hot haloes in clusters, groups and galaxies. MNRAS 420(4), 3174–3194 (2012). https://doi.org/10.1111/j.1365-2966.2011.20246.x

    Article  ADS  Google Scholar 

  • A. Siemiginowska, D.J. Burke, T.L. Aldcroft, D.M. Worrall, S. Allen, J. Bechtold, T. Clarke, C.C. Cheung, High-redshift X-ray cooling-core cluster associated with the luminous radio-loud Quasar 3C 186. ApJ 722(1), 102–111 (2010). https://doi.org/10.1088/0004-637X/722/1/102

    Article  ADS  Google Scholar 

  • D. Sijacki, V. Springel, Hydrodynamical simulations of cluster formation with central AGN heating. MNRAS 366(2), 397–416 (2006). https://doi.org/10.1111/j.1365-2966.2005.09860.x

    Article  ADS  Google Scholar 

  • D. Sijacki, M. Vogelsberger, S. Genel, V. Springel, P. Torrey, G.F. Snyder, D. Nelson, L. Hernquist, The Illustris simulation: the evolving population of black holes across cosmic time. MNRAS 452(1), 575–596 (2015). https://doi.org/10.1093/mnras/stv1340

    Article  ADS  Google Scholar 

  • J. Silk, Unleashing positive feedback: linking the rates of star formation, supermassive black hole accretion, and outflows in distant galaxies. ApJ 772(2), 112 (2013). https://doi.org/10.1088/0004-637X/772/2/112

  • J. Silk, M.J. Rees, Quasars and galaxy formation. A&A 331, L1–L4 (1998)

    ADS  Google Scholar 

  • A. Simionescu, E. Roediger, P.E.J. Nulsen, M. Brüggen, W.R. Forman, H. Böhringer, N. Werner, A. Finoguenov, The large-scale shock in the cluster of galaxies Hydra A. A&A 495(3), 721–732 (2009). https://doi.org/10.1051/0004-6361:200811071

    Article  ADS  Google Scholar 

  • A. Simionescu, J. ZuHone, I. Zhuravleva, E. Churazov, M. Gaspari, D. Nagai, N. Werner, E. Roediger, R. Canning, D. Eckert, L. Gu, F. Paerels, Constraining gas motions in the intra-cluster medium. Space Sci. Rev. 215(2), 24 (2019). https://doi.org/10.1007/s11214-019-0590-1

  • T. Somboonpanyakul, M. McDonald, M. Gaspari, B. Stalder, A.A. Stark, The clusters hiding in plain sight (CHiPS) survey: complete sample of extreme BCG clusters. ApJ 910(1), 60 (2021). https://doi.org/10.3847/1538-4357/abe1bc

  • S.S. Sonkamble, n.d. Vagshette, P.K. Pawar, M.K. Patil, X-ray cavities and temperature jumps in the environment of the strong cool core cluster Abell 2390. Ap&SS 359, 21 (2015). https://doi.org/10.1007/s10509-015-2508-z

  • V. Springel, T. Di Matteo, L. Hernquist, Modelling feedback from stars and black holes in galaxy mergers. MNRAS 361(3), 776–794 (2005). https://doi.org/10.1111/j.1365-2966.2005.09238.x

    Article  ADS  Google Scholar 

  • A. Sternberg, N. Soker, Sound waves excitation by jet-inflated bubbles in clusters of galaxies. MNRAS 395(1), 228–233 (2009). https://doi.org/10.1111/j.1365-2966.2009.14566.x

    Article  ADS  Google Scholar 

  • K.-Y. Su, P.F. Hopkins, G.L. Bryan, R.S. Somerville, C.C. Hayward, D. Anglés-Alcázar, C.-A. Faucher-Giguère, S. Wellons, J. Stern, B.A. Terrazas, T.K. Chan, M.E. Orr, C. Hummels, R. Feldmann, D. Kereš, Which AGN jets quench star formation in massive galaxies? MNRAS 507(1), 175–204 (2021). https://doi.org/10.1093/mnras/stab2021

    Article  ADS  Google Scholar 

  • R.A. Sunyaev, Y.B. Zeldovich, The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies. Comments Astrophys. Space Phys. 4, 173 (1972)

    ADS  Google Scholar 

  • R.S. Sutherland, M.A. Dopita, Cooling functions for low-density astrophysical plasmas. ApJS 88, 253 (1993). https://doi.org/10.1086/191823

    Article  ADS  Google Scholar 

  • D.S. Swetz, P.A.R. Ade, M. Amiri, J.W. Appel, E.S. Battistelli, B. Burger, J. Chervenak, M.J. Devlin, S.R. Dicker, W.B. Doriese, R. Dünner, T. Essinger-Hileman, R.P. Fisher, J.W. Fowler, M. Halpern, M. Hasselfield, G.C. Hilton, A.D. Hincks, K.D. Irwin, N. Jarosik, M. Kaul, J. Klein, J.M. Lau, M. Limon, T.A. Marriage, D. Marsden, K. Martocci, P. Mauskopf, H. Moseley, C.B. Netterfield, M.D. Niemack, M.R. Nolta, L.A. Page, L. Parker, S.T. Staggs, O. Stryzak, E.R. Switzer, R. Thornton, C. Tucker, E. Wollack, Y. Zhao, Overview of the atacama cosmology telescope: receiver, instrumentation, and telescope systems. ApJS 194(2), 41 (2011). https://doi.org/10.1088/0067-0049/194/2/41

  • X. Tang, E. Churazov, Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters. MNRAS 468(3), 3516–3532 (2017). https://doi.org/10.1093/mnras/stx590

    Article  ADS  Google Scholar 

  • A. Tchekhovskoy, O. Bromberg, Three-dimensional relativistic MHD simulations of active galactic nuclei jets: magnetic kink instability and Fanaroff-Riley dichotomy. MNRAS 461(1), L46–L50 (2016). https://doi.org/10.1093/mnrasl/slw064

    Article  ADS  Google Scholar 

  • A. Tchekhovskoy, R. Narayan, J.C. McKinney, Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. MNRAS 418(1), L79–L83, (2011). https://doi.org/10.1111/j.1745-3933.2011.01147.x

    Article  ADS  Google Scholar 

  • B.A. Terrazas, E.F. Bell, A. Pillepich, D. Nelson, R.S. Somerville, S. Genel, R. Weinberger, M. Habouzit, Y. Li, L. Hernquist, M. Vogelsberger, The relationship between black hole mass and galaxy properties: examining the black hole feedback model in IllustrisTNG. MNRAS 493(2), 1888–1906, (2020). https://doi.org/10.1093/mnras/staa374

    Article  ADS  Google Scholar 

  • The Lynx Team, The Lynx Mission Concept Study Interim Report. ar**v e-prints, art. ar**v:1809.09642 (2018)

    Google Scholar 

  • F. Tombesi, M. Cappi, J.N. Reeves, G.G.C. Palumbo, V. Braito, M. Dadina, Evidence for ultra-fast outflows in radio-quiet active galactic nuclei. II. Detailed photoionization modeling of Fe K-shell absorption lines. ApJ 742(1), 44 (2011). https://doi.org/10.1088/0004-637X/742/1/44

  • S. Tremaine, K. Gebhardt, R. Bender, G. Bower, A. Dressler, S.M. Faber, A.V. Filippenko, R. Green, C. Grillmair, L.C. Ho, J. Kormendy, T.R. Lauer, J. Magorrian, J. Pinkney, D. Richstone, The slope of the black hole mass versus velocity dispersion correlation. ApJ 574(2), 740–753 (2002). https://doi.org/10.1086/341002

    Article  ADS  Google Scholar 

  • G.R. Tremblay, J.B.R. Oonk, F. Combes, P. Salomé, C.P. O’Dea, S.A. Baum, G.M. Voit, M. Donahue, B.R. McNamara, T.A. Davis, M.A. McDonald, A.C. Edge, T.E. Clarke, R. Galván-Madrid, M.N. Bremer, L.O.V. Edwards, A.C. Fabian, S. Hamer, Y. Li, A. Maury, H.R. Russell, A.C. Quillen, C.M. Urry, J.S. Sanders, M.W. Wise, Cold, clumpy accretion onto an active supermassive black hole. Nature 534(7606), 218–221 (2016). https://doi.org/10.1038/nature17969

    Article  ADS  Google Scholar 

  • G.R. Tremblay, F. Combes, J.B.R. Oonk, H.R. Russell, M.A. McDonald, M. Gaspari, B. Husemann, P.E.J. Nulsen, B.R. McNamara, S.L. Hamer, C.P. O’Dea, S.A. Baum, T.A. Davis, M. Donahue, G.M. Voit, A.C. Edge, E.L. Blanton, M.N. Bremer, E. Bulbul, T.E. Clarke, L.P. David, L.O.V. Edwards, D. Eggerman, A.C. Fabian, W. Forman, C. Jones, N. Kerman, R.P. Kraft, Y. Li, M. Powell, S.W. Randall, P. Salomé, A. Simionescu, Y. Su, M. Sun, C.M. Urry, A.N. Vantyghem, B.J. Wilkes, J.A. ZuHone, A galaxy-scale fountain of cold molecular gas pumped by a black hole. ApJ 865(1), 13 (2018). https://doi.org/10.3847/1538-4357/aad6dd

  • M. Tremmel, M. Karcher, F. Governato, M. Volonteri, T.R. Quinn, A. Pontzen, L. Anderson, J. Bellovary, The Romulus cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs. MNRAS 470(1), 1121–1139 (2017). https://doi.org/10.1093/mnras/stx1160

    Article  ADS  Google Scholar 

  • n.d. Vagshette, S. Naik, M.K. Patil, S.S. Sonkamble, Detection of a pair of prominent X-ray cavities in Abell 3847. MNRAS 466(2), 2054–2066 (2017). https://doi.org/10.1093/mnras/stw3227

  • n.d. Vagshette, S. Naik, M.K. Patil, Cavities, shocks and a cold front around 3C 320. MNRAS 485(2), 1981–1989 (2019). https://doi.org/10.1093/mnras/stz476

  • S. Veilleux, M. Meléndez, E. Sturm, J. Gracia-Carpio, J. Fischer, E. González-Alfonso, A. Contursi, D. Lutz, A. Poglitsch, R. Davies, R. Genzel, L. Tacconi, J.A. de Jong, A. Sternberg, H. Netzer, S. Hailey-Dunsheath, A. Verma, D.S.N. Rupke, R. Maiolino, S.H. Teng, E. Polisensky, Fast molecular outflows in luminous galaxy mergers: evidence for Quasar feedback from Herschel. ApJ 776(1), 27 (2013). https://doi.org/10.1088/0004-637X/776/1/27

  • J.C. Vernaleo, C.S. Reynolds, AGN feedback and cooling flows: problems with simple hydrodynamic models. ApJ 645(1), 83–94 (2006). https://doi.org/10.1086/504029

    Article  ADS  Google Scholar 

  • L.M. Voigt, R.W. Schmidt, A.C. Fabian, S.W. Allen, R.M. Johnstone, Conduction and cooling flows. MNRAS 335(1), L7–L11 (2002). https://doi.org/10.1046/j.1365-8711.2002.05741.x

    Article  ADS  Google Scholar 

  • G.M. Voit, Quasi-steady configurations of conductive intracluster media. ApJ 740(1), 28 (2011). https://doi.org/10.1088/0004-637X/740/1/28

  • G.M. Voit, A role for turbulence in circumgalactic precipitation. ApJ 868(2), 102 (2018). https://doi.org/10.3847/1538-4357/aae8e2

  • G.M. Voit, G. Meece, Y. Li, B.W. O’Shea, G.L. Bryan, M. Donahue, A global model for circumgalactic and cluster-core precipitation. ApJ 845(1), 80 (2017). https://doi.org/10.3847/1538-4357/aa7d04

  • G.M. Voit, G.L. Bryan, D. Prasad, R. Frisbie, Y. Li, M. Donahue, B.W. O’Shea, M. Sun, N. Werner, A black hole feedback valve in massive galaxies. ApJ 899(1), 70 (2020). https://doi.org/10.3847/1538-4357/aba42e

  • H.J. Völk, F.A. Aharonian, D. Breitschwerdt, The nonthermal energy content and gamma-ray emission of starburst galaxies and clusters of galaxies. Space Sci. Rev. 75(1–2), 279–297 (1996). https://doi.org/10.1007/BF00195040

    ADS  Google Scholar 

  • A. Von Der Linden, P.N. Best, G. Kauffmann, S.D.M. White, How special are brightest group and cluster galaxies? MNRAS 379(3), 867–893 (2007). https://doi.org/10.1111/j.1365-2966.2007.11940.x

    Article  ADS  Google Scholar 

  • S.-C. Wang, H.Y.K. Yang, Production efficiencies of sound waves in the intracluster medium driven by AGN jets. ar**v e-prints, art. ar**v:2201.05298 (2022)

    Google Scholar 

  • C. Wang, M. Ruszkowski, C. Pfrommer, S.P. Oh, H.Y.K. Yang, Non-Kolmogorov turbulence in multiphase intracluster medium driven by cold gas precipitation and AGN jets. MNRAS 504(1), 898–909 (2021). https://doi.org/10.1093/mnras/stab966

    Article  ADS  Google Scholar 

  • T.M.A. Webb, A. Muzzin, A. Noble, N. Bonaventura, J. Geach, Y. Hezaveh, C. Lidman, G. Wilson, H.K.C. Yee, J. Surace, D. Shupe, The star formation history of BCGs to z = 1.8 from the SpARCS/SWIRE survey: evidence for significant in situ star formation at high redshift. ApJ 814(2), 96 (2015). https://doi.org/10.1088/0004-637X/814/2/96

  • R. Weinberger, K. Ehlert, C. Pfrommer, R. Pakmor, V. Springel, Simulating the interaction of jets with the intracluster medium. MNRAS 470(4), 4530–4546 (2017). https://doi.org/10.1093/mnras/stx1409

    Article  ADS  Google Scholar 

  • R. Weinberger, V. Springel, R. Pakmor, D. Nelson, S. Genel, A. Pillepich, M. Vogelsberger, F. Marinacci, J. Naiman, P. Torrey, L. Hernquist, Supermassive black holes and their feedback effects in the IllustrisTNG simulation. MNRAS 479(3), 4056–4072 (2018). https://doi.org/10.1093/mnras/sty1733

    Article  ADS  Google Scholar 

  • N. Werner, A. Simionescu, E.T. Million, S.W. Allen, P.E.J. Nulsen, A. von der Linden, S.M. Hansen, H. Böhringer, E. Churazov, A.C. Fabian, W.R. Forman, C. Jones, J.S. Sanders, G.B. Taylor, Feedback under the microscope-II. Heating, gas uplift and mixing in the nearest cluster core. MNRAS 407(4), 2063–2074 (2010). https://doi.org/10.1111/j.1365-2966.2010.16755.x

  • N. Werner, B.R. McNamara, E. Churazov, E. Scannapieco, Hot atmospheres, cold gas, AGN feedback and the evolution of early type galaxies: a topical perspective. Space Sci. Rev. 215(1), 5 (2019). https://doi.org/10.1007/s11214-018-0571-9

  • S.D.M. White, C.S. Frenk, Galaxy Formation through Hierarchical Clustering. ApJ 379, 52 (1991). https://doi.org/10.1086/170483

    Article  ADS  Google Scholar 

  • J. Wiener, S.P. Oh, F. Guo, Cosmic ray streaming in clusters of galaxies. MNRAS 434(3), 2209–2228 (2013). https://doi.org/10.1093/mnras/stt1163

    Article  ADS  Google Scholar 

  • G. Wilson, A. Muzzin, H.K.C. Yee, M. Lacy, J. Surace, D. Gilbank, K. Blindert, H. Hoekstra, S. Majumdar, R. Demarco, J.P. Gardner, M.D. Gladders, C. Lonsdale, Spectroscopic confirmation of a massive red-sequence-selected galaxy cluster at z = 1.34 in the SpARCS-South cluster survey. ApJ 698(2), 1943–1950 (2009). https://doi.org/10.1088/0004-637X/698/2/1943

  • K.-W. Wong, J.A. Irwin, R.V. Shcherbakov, M. Yukita, E.T. Million, J.N. Bregman, The megasecond Chandra X-ray visionary project observation of NGC 3115: witnessing the flow of hot gas within the bondi radius. ApJ 780(1), 9 (2014). https://doi.org/10.1088/0004-637X/780/1/9

  • XRISM Science Team, XRISM Quick Reference. ar**v e-prints, art. ar**v:2202.05399 (2022)

    Google Scholar 

  • H. Xu, H. Li, D. Collins, S. Li, M.L. Norman, Formation of X-ray cavities by the magnetically dominated jet-lobe system in a galaxy cluster. ApJ 681(2), L61 (2008). https://doi.org/10.1086/590407

  • H. Xu, H. Li, D.C. Collins, S. Li, M.L. Norman, Evolution and distribution of magnetic fields from active galactic nuclei in galaxy clusters. II. The effects of cluster size and dynamical state. ApJ 739(2), 77 (2011). https://doi.org/10.1088/0004-637X/739/2/77

  • H.Y.K. Yang, C.S. Reynolds, How AGN jets heat the intracluster medium—insights from hydrodynamic simulations. ApJ 829(2), 90 (2016a). https://doi.org/10.3847/0004-637X/829/2/90

  • H.Y.K. Yang, C.S. Reynolds, Interplay among cooling, AGN feedback, and anisotropic conduction in the cool cores of galaxy clusters. ApJ 818(2), 181 (2016b). https://doi.org/10.3847/0004-637X/818/2/181

  • H.Y.K. Yang, M. Gaspari, C. Marlow, The impact of radio AGN bubble composition on the dynamics and thermal balance of the intracluster medium. ApJ 871(1), 6 (2019). https://doi.org/10.3847/1538-4357/aaf4bd

  • D. Yoon, F. Yuan, Z.-M. Gan, J.P. Ostriker, Y.-P. Li, L. Ciotti, Active galactic nucleus feedback in an elliptical galaxy with the most updated AGN physics. II. High angular momentum case. ApJ 864(1), 6 (2018). https://doi.org/10.3847/1538-4357/aad37e

  • F. Yuan, R. Narayan, Hot accretion flows around black holes. ARA&A 52, 529–588 (2014). https://doi.org/10.1146/annurev-astro-082812-141003

    Article  ADS  Google Scholar 

  • F. Yuan, F. **e, J.P. Ostriker, Global compton heating and cooling in hot accretion flows. ApJ 691(1), 98–104 (2009). https://doi.org/10.1088/0004-637X/691/1/98

    Article  ADS  Google Scholar 

  • C. Zhang, E. Churazov, A.A. Schekochihin, Generation of internal waves by buoyant bubbles in galaxy clusters and heating of intracluster medium. MNRAS 478(4), 4785–4798 (2018). https://doi.org/10.1093/mnras/sty1269

    Article  ADS  Google Scholar 

  • C. Zhang, I. Zhuravleva, M.-L. Gendron-Marsolais, E. Churazov, A.A. Schekochihin, W.R. Forman, Bubble-driven gas uplift in galaxy clusters and its velocity features. ar**v e-prints, art. ar**v:2203.04259 (2022)

    Google Scholar 

  • I. Zhuravleva, E. Churazov, A.A. Schekochihin, S.W. Allen, P. Arévalo, A.C. Fabian, W.R. Forman, J.S. Sanders, A. Simionescu, R. Sunyaev, A. Vikhlinin, N. Werner, Turbulent heating in galaxy clusters brightest in X-rays. Nature 515(7525), 85–87 (2014). https://doi.org/10.1038/nature13830

    Article  ADS  Google Scholar 

  • I. Zhuravleva, E. Churazov, P. Arévalo, A.A. Schekochihin, S.W. Allen, A.C. Fabian, W.R. Forman, J.S. Sanders, A. Simionescu, R. Sunyaev, A. Vikhlinin, N. Werner, Gas density fluctuations in the Perseus Cluster: clum** factor and velocity power spectrum. MNRAS 450(4), 4184–4197 (2015). https://doi.org/10.1093/mnras/stv900

    Article  ADS  Google Scholar 

  • I. Zhuravleva, S.W. Allen, A. Mantz, N. Werner, Gas perturbations in the cool cores of galaxy clusters: effective equation of state, velocity power spectra, and turbulent heating. ApJ 865(1), 53 (2018). https://doi.org/10.3847/1538-4357/aadae3

  • E.G. Zweibel, V.V. Mirnov, M. Ruszkowski, C.S. Reynolds, H.Y.K. Yang, A.C. Fabian, Acoustic disturbances in galaxy clusters. ApJ 858(1), 5 (2018). https://doi.org/10.3847/1538-4357/aab9ae

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julie Hlavacek-Larrondo , Yuan Li or Eugene Churazov .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hlavacek-Larrondo, J., Li, Y., Churazov, E. (2022). AGN Feedback in Groups and Clusters of Galaxies. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-16-4544-0_122-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4544-0_122-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4544-0

  • Online ISBN: 978-981-16-4544-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation