Glider

  • Living reference work entry
  • First Online:
Encyclopedia of Ocean Engineering

Synonyms

Autonomous underwater glider (AUG); Underwater glider (UG)

Definition

Underwater Glider (UG) is a new type of autonomous underwater vehicle (AUV), which can perform three-dimensional observation from the surface to its working depth. UG follows a typical sawtooth-like profile in the ocean. The observation duration is generally several months, and the cruising range capacity can reach thousands of kilometers. It has the characteristics of low noise, low cost, and round-the-clock service. It can carry different mission sensors (e.g., CTD, Shear Probe) and is equipped with GPS navigation and positioning system. It has become a quasi-real-time, sustainable, large-scale, and high-resolution platform for marine observation and detection.

The concept of UG, a glider with a buoyancy engine powered by a heat exchanger, was first introduced to the oceanographic community by Henry Stommel in 1989, when he proposed a glider concept called Slocum, developed with research engineer Doug Webb...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • ALSEAMAR. Seaexplorer. 28 Mar 2018. https://www.alseamar-alcen.com/products/underwater-glider/seaexplorer

  • Alvarez A, Caffaz A, Caiti A et al (2009) Fòlaga: a low-cost autonomous underwater vehicle combining glider and AUV capabilities. Ocean Eng 36(1):24–38

    Article  Google Scholar 

  • Arima M, Okashima T, Yamada T (2011) Development of a solar-powered underwater glider. In: 2011 IEEE symposium on underwater technology and workshop on scientific use of submarine cables and related technologies, IEEE, Kobe, Japan, pp 1–5

    Google Scholar 

  • Arima M, Tonai H, Yoshida K (2014) Development of an ocean-going solar-powered underwater glider. In: The twenty-fourth international ocean and polar engineering conference. International Society of Offshore and Polar Engineers, Busan, pp 444–448

    Google Scholar 

  • Asakawa K, Watare K, Ohuchi H et al (2016) Buoyancy engine developed for underwater gliders. Adv Robot 30(1):41–49

    Article  Google Scholar 

  • Bachmayer R, Leonard NE, Graver J et al (2004) Underwater gliders: recent developments and future applications. In: International symposium on underwater technology. IEEE, Taipei

    Google Scholar 

  • Borchsenius J, Pinder S (2010) Underwater glider propulsion using chemical hydrides. In: Oceans 2010. IEEE, Sydney, pp 1–8

    Google Scholar 

  • Caiti A, Calabro V, Grammatico S et al (2011) Lagrangian modeling of the underwater wave glider. In: Oceans, IEEE, Santander, Spain, 2011. pp 1–6

    Google Scholar 

  • Chen G, Zhang Y, Zhao J (2014) Optimum lift-drag ratio of the underwater glider based on mixture models. J Sichuan Ordnance 2014(2):150–152

    Google Scholar 

  • Claustre H, Beguery L, Patrice PLA (2014) SeaExplorer glider breaks two world records multisensor UUV Achieves global milestones for endurance, distance. Sea Technol 55(3):19–22

    Google Scholar 

  • D’Spain GL. XRay/ZRay gliders. Scripps Institution of Oceanography. 25 May 2012

    Google Scholar 

  • D’Spain GL, Jenkins SA, Zimmerman R et al (2005) Underwater acoustic measurements with the Liberdade/X-Ray flying wing glider. Acoust Soc Am J 117(4):2624

    Article  Google Scholar 

  • Davis RE, Eriksen CC, Jones CP (2002) Chapter 3, Autonomous buoyancy-driven underwater gliders. In: The technology and applications of autonomous underwater vehicles. Taylor & Francis, London, UK

    Google Scholar 

  • Eriksen CC, Osse TJ, Light RD et al (2001) Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J Ocean Eng 26(4):424–436

    Article  Google Scholar 

  • Guo S, Du J, Ye X et al (2010) Realtime adjusting control algorithm for the spherical underwater robot. Int J Inf 13(6):2021–2029

    Google Scholar 

  • Guo S, Du J, Ye X et al (2011) The computational design of a water jet propulsion spherical underwater vehicle. In: 2011 IEEE international conference on mechatronics and automation. IEEE, Bei**g

    Google Scholar 

  • He Y, Song B, Dong H (2018) Multi-objective optimization design for the multi-bubble pressure cabin in BWB underwater glider. Int J Nav Arch Ocean Eng 10(4): 439–449

    Article  Google Scholar 

  • Hildebrand JA, D’Spain GL, Roch MA et al (2009) Glider-based passive acoustic monitoring techniques in the southern California region. Scripps Institution of Oceanography, La Jolla

    Book  Google Scholar 

  • Кожемякин ИВ, Блинков АП, Рождественский КВ et al (2016) Перспективные Платформы Морской Робототехнической Системы И Некоторые Варианты Их Применения. Известия Южного федерального университета. Технич-еские науки 2016(1):174

    Google Scholar 

  • Lei Z, Wang Y, Zhang L et al (2016) Uncertainty behavior research of hybrid underwater glider. In: Oceans 2016. IEEE, Shanghai

    Google Scholar 

  • Liu J, Wang Y, Liu Y et al (2013) Optimization design for the pressure shell of autonomous underwater glider based on GDO method. Appl Mech Mater 312:80–84

    Article  Google Scholar 

  • Liu F, Wang Y, Wang S (2014a) Development of the hybrid underwater glider Petrel-II. Sea Technol 55(4):51–54

    Google Scholar 

  • Liu F, Wang Y, Niu W et al (2014b) Hydrodynamic performance analysis and experiments of a hybrid underwater glider with different layout of wings. In: Oceans 2014. IEEE, Taipei

    Google Scholar 

  • Ma D, Ma Z, Zhang H et al (2007) Hydrodynamic analysis and optimization on the gliding attitude of the underwater glider. J Hydrodyn 22(6):703–708

    Google Scholar 

  • Ma Z, Wang Y, Wang S et al (2016) Ocean thermal energy harvesting with phase change material for underwater glider. Appl Energy 178:557–566

    Article  Google Scholar 

  • Ma W, Wang Y, Yang S et al (2018) Observation of internal solitary waves using an underwater glider in the northern South China Sea. J Coast Res 34(5):1188–1195

    Article  Google Scholar 

  • Niu W, Wang S, Wang Y et al (2017) Stability analysis of hybrid-driven underwater glider. China Ocean Eng 31(5):528–538

    Article  Google Scholar 

  • Office of Naval Research. Liberdade XRay advanced underwater gilder. 19 Apr 2006

    Google Scholar 

  • Osse TJ, Eriksen CC (2007) The deepglider: a full ocean depth glider for oceanographic research. In: Oceans 2007. IEEE, Vancouver

    Google Scholar 

  • Qin Y, Zhang X, Sun X et al (2016) Design of a high-efficiency propeller for hybrid drive underwater gliders. Ocean Technol 35(3):40–45

    Google Scholar 

  • Qin Y, Sun X, Lin X et al (2017) Propulsive efficiency of low rotation propeller for underwater glider. J PLA Univ Sci Technol (Nat Sci Ed) 18(1):61–67

    Google Scholar 

  • Rudnick DL, Davis RE, Eriksen CC et al (2004) Underwater gliders for ocean research. Mar Technol Soc J 38(2):73–84

    Article  Google Scholar 

  • Rudnick DL, Davis RE, Sherman JT (2016) Spray underwater glider operations. J Atmos Ocean Technol 33(6):1113–1122

    Article  Google Scholar 

  • Sang H (2018) Heading tracking control with an adaptive hybrid control for under actuated underwater glider. ISA Trans 80:554–563

    Article  Google Scholar 

  • Schofield O, Kohut J, Aragon D et al (2010) Slocum gliders: robust and ready. J Field Robot 24(6):473–485

    Article  Google Scholar 

  • Sherman J, Davis RE, Owens WB et al (2001) The autonomous underwater glider “Spray”. IEEE J Ocean Eng 26(4):437–446

    Article  Google Scholar 

  • Song D, Chen L, Wang Y et al (2014) Optimal structure design and analysis of pressure hull for the underwater glider. Adv Mater Res 850–851:317–321

    Google Scholar 

  • Stephen (2009) Autonomous underwater gliders. In Tech 47(5):84–96

    Google Scholar 

  • Stommel H (1989) The Slocum Mission. Oceanography 2(1):22–25

    Article  Google Scholar 

  • Tian W, Song B, Liu Z (2013) Motion characteristic analysis of a hybrid-driven underwater glider with independently controllable wings. J Northwest Polytech Univ 31(1):122–128

    Google Scholar 

  • Townsend NC, Shenoi RA (2016) Feasibility study of a new energy scavenging system for an autonomous underwater vehicle. Auton Robot 40(16):1–13

    Google Scholar 

  • U.S. Navy Program Guide 2012. 06 Aug 2014

    Google Scholar 

  • Wang S, Li X, Wang Y et al (2005) Dynamic modeling and analysis of underwater gliders. Ocean Technol 24(1):5–9

    MathSciNet  Google Scholar 

  • Wang S, Wang Y, Zhang D et al (2006) Design and trial on an underwater glider propelled by thermal engine. Ocean Technol 25(1):1–5

    Google Scholar 

  • Wang B, Zhu G, Ren W et al (2008) Design and optimization of pressure case for underwater glider. Ocean Technol 27(2):9–11

    Google Scholar 

  • Wang S, Sun X, Wang Y (2011) Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider. China Ocean Eng 25(1):97–112

    Article  Google Scholar 

  • Webb DC, Simonetti PJ, Jones CP (2001) SLOCUM: an underwater glider propelled by environmental energy. IEEE J Ocean Eng 26(4):447–452

    Article  Google Scholar 

  • Wood SL, Mierzwa CE (2013) State of technology in autonomous underwater gliders. Mar Technol Soc J 47(5):84–96

    Article  Google Scholar 

  • Yang C, Peng S, Fan S (2014) Performance and stability analysis for ZJU glider. Mar Technol Soc J 48(3): 88–103

    Article  Google Scholar 

  • Yang Y, Liu Y, Zhang L et al (2016) Influence of the propeller on motion performance of HUGs. In: Oceans 2016. IEEE, Shanghai

    Google Scholar 

  • Yu J, ** W, Tan Z et al (2017) Development and experiments of the Sea-Wing 7000 underwater glider. Oceans–Anchorage, Anchorage

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, Y., Yang, S. (2019). Glider. In: Cui, W., Fu, S., Hu, Z. (eds) Encyclopedia of Ocean Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6963-5_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6963-5_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6963-5

  • Online ISBN: 978-981-10-6963-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation