Biomarkers Associated with Adiposity and Metabolic Dysfunction in Hepatobiliary Tract Cancer

  • Living reference work entry
  • First Online:
Biomarkers in Liver Disease

Abstract

There is ample evidence implicating obesity, nonalcoholic fatty liver disease, and associated metabolic disorders in the risk of hepatobiliary tract cancer. A number of circulating biomarkers related to obesity and metabolic dysfunction could serve as (1) reliable proxies for adiposity-associated disease risk, (2) indicators of intermediate phenotypic alterations, and (3) early markers of elevated disease risk. This book chapter is aimed at providing an overview of recent advances linking biomarkers associated with obesity and impaired metabolism with hepatobiliary tract cancer development and progression. Here, we largely focus on the role of selected metabolic biomarkers – both established and novel ones – as potential intermediates of the association between obesity and liver cancer risk by means of understanding etiology and improving prevention. Overall, evidence has emerged to suggest circulating biomarkers indicative of hyperinsulinemia, biomarkers of chronic low-grade inflammation and immune response, and selected adipose tissue-derived cytokines and hormones to be associated with the risk of the most common form of liver cancer – hepatocellular carcinoma. Moreover, recent evidence largely supports the role of metabolic biomarkers as early disease risk predictors in “low-risk” population groups such as Western Europe and North America. Novel “omics” technologies – metabolomics, proteomics, and glycomics – are intensively being used for the identification of biomarkers in the metabolic pathways. Targeted and untargeted metabolomic approaches have recently led to the discovery of metabolites representing key metabolic alterations in amino acid, polyunsaturated lipid, acetate, and citrate metabolism in the development of liver cancer. Furthermore, metabolic biomarkers were shown to improve primary liver cancer diagnosis beyond the most common biomarkers applied in clinical practice – i.e., alpha-fetoprotein and liver enzyme levels. The role of obesity and metabolic biomarkers was also suggested for gallbladder cancer; however these links remain largely uninvestigated. Despite the given promise for biomarker application, further research is warranted in order to better characterize specific metabolic biomarkers in understanding etiology and their validation as early markers for risk assessment of hepatobiliary tract cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

EPIC:

European Prospective Investigation into Cancer and Nutrition Cohort

HCC:

Hepatocellular carcinoma

HOMA-IR index:

Homeostasis model assessment of insulin resistance index

IGF:

Insulin-like growth factor

IGFBP:

Insulin-like growth factor binding protein

IL-6:

Interleukin-6

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

TNF-a:

Tumor necrosis factor-alpha

References

  • Abenavoli L, Peta V. Role of adipokines and cytokines in non-alcoholic fatty liver disease. Rev Recent Clin Trials. 2014;9(3):134–40.

    Article  CAS  PubMed  Google Scholar 

  • Aleksandrova K, et al. Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer. Hepatology. 2014;60(3):858–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arano T, et al. Serum level of adiponectin and the risk of liver cancer development in chronic hepatitis C patients. Int J Cancer. 2011;129(9):2226–35.

    Article  CAS  PubMed  Google Scholar 

  • Bekaert M, et al. Association of recently described adipokines with liver histology in biopsy-proven non-alcoholic fatty liver disease: a systematic review. Obes Rev. 2016;17(1):68–80.

    Article  CAS  PubMed  Google Scholar 

  • Bell LN, et al. Serum proteomics and biomarker discovery across the spectrum of nonalcoholic fatty liver disease. Hepatology. 2010;51(1):111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellentani S, Marino M. Epidemiology and natural history of non-alcoholic fatty liver disease (NAFLD). Ann Hepatol. 2009;8 Suppl 1:S4–8.

    PubMed  Google Scholar 

  • Bertolani C, Marra F. The role of adipokines in liver fibrosis. Pathophysiology. 2008;15(2):91–101.

    Article  CAS  PubMed  Google Scholar 

  • Buechler C, Wanninger J, Neumeier M. Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol. 2011;17(23):2801–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabibbo G, Craxi A. Epidemiology, risk factors and surveillance of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 2010;14(4):352–5.

    CAS  PubMed  Google Scholar 

  • Caldwell SH, et al. Obesity and hepatocellular carcinoma. Gastroenterology. 2004;127(5 Suppl 1):S97–103.

    Article  CAS  PubMed  Google Scholar 

  • Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.

    Article  CAS  PubMed  Google Scholar 

  • Center MM, Jemal A. International trends in liver cancer incidence rates. Cancer Epidemiol Biomarkers Prev. 2011;20(11):2362–8.

    Article  PubMed  Google Scholar 

  • Chao LT, et al. Insulin, glucose and hepatocellular carcinoma risk in male hepatitis B carriers: results from 17-year follow-up of a population-based cohort. Carcinogenesis. 2011;32(6):876–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, et al. Serum protein N-glycans profiling for the discovery of potential biomarkers for nonalcoholic steatohepatitis. J Proteome Res. 2009;8(2):463–70.

    Article  CAS  PubMed  Google Scholar 

  • Chettouh H, et al. Hyperinsulinaemia and insulin signalling in the pathogenesis and the clinical course of hepatocellular carcinoma. Liver Int. 2015;35(10):2203–17.

    Article  CAS  PubMed  Google Scholar 

  • Cheung O, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48(6):1810–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemmons DR. Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev. 1997;8(1):45–62.

    Article  CAS  PubMed  Google Scholar 

  • Donohoe CL, Doyle SL, Reynolds JV. Visceral adiposity, insulin resistance and cancer risk. Diabetology & Metabolic Syndrome. 2011;3:12. doi:10.1186/1758-5996-3-12.

    Article  Google Scholar 

  • Dutta D, et al. Leptin and cancer: pathogenesis and modulation. Indian J Endocrinol Metab. 2012;16 Suppl 3:S596–600.

    PubMed  PubMed Central  Google Scholar 

  • Eguchi Y, et al. Visceral fat accumulation and insulin resistance are important factors in nonalcoholic fatty liver disease. J Gastroenterol. 2006;41(5):462–9.

    Article  CAS  PubMed  Google Scholar 

  • Eguchi Y, et al. The pathological role of visceral fat accumulation in steatosis, inflammation, and progression of nonalcoholic fatty liver disease. J Gastroenterol. 2011;46 Suppl 1:70–8.

    Article  CAS  PubMed  Google Scholar 

  • Elinav E, et al. Suppression of hepatocellular carcinoma growth in mice via leptin, is associated with inhibition of tumor cell growth and natural killer cell activation. J Hepatol. 2006;44(3):529–36.

    Article  CAS  PubMed  Google Scholar 

  • El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27.

    Article  CAS  PubMed  Google Scholar 

  • El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.

    Article  CAS  PubMed  Google Scholar 

  • Fages A, Duarte-Salles T, Stepien M, Ferrari P, Fedirko V, Pontoizeau C, et al. Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC medicine. 2015;13:242. http://creativecommons.org/publicdomain/zero/1.0/.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferlay J et al. Cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. Lyon: International Agency for Research on Cancer; 2014. Available from http://globocan.iarc.fr. Accessed 30 May 2016.

  • Fitzpatrick E, Dhawan A. Noninvasive biomarkers in non-alcoholic fatty liver disease: current status and a glimpse of the future. World J Gastroenterol. 2014;20(31):10851–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu X, et al. Relative telomere length: a novel non-invasive biomarker for the risk of non-cirrhotic hepatocellular carcinoma in patients with chronic hepatitis B infection. Eur J Cancer. 2012;48(7):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Calzon S, et al. Longitudinal association of telomere length and obesity indices in an intervention study with a Mediterranean diet: the PREDIMED-NAVARRA trial. Int J Obes (Lond). 2014;38(2):177–82.

    Article  CAS  Google Scholar 

  • GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 1 [Internet].Lyon, France: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr, accessed on 25 May 2016.

    Google Scholar 

  • Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–5.

    CAS  PubMed  Google Scholar 

  • Haukeland JW, et al. Fetuin A in nonalcoholic fatty liver disease: in vivo and in vitro studies. Eur J Endocrinol. 2012;166(3):503–10.

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res. 2013;73(16):4992–5002.

    Article  CAS  PubMed  Google Scholar 

  • Hung TM, et al. Up-regulation of microRNA-190b plays a role for decreased IGF-1 that induces insulin resistance in human hepatocellular carcinoma. PLoS One. 2014;9(2):e89446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  • Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalafateli M, et al. Adipokines levels are associated with the severity of liver disease in patients with alcoholic cirrhosis. World J Gastroenterol. 2015;21(10):3020–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalhan SC, et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. 2011;60(3):404–13.

    Article  CAS  PubMed  Google Scholar 

  • Kamada Y, Takehara T, Hayashi N. Adipocytokines and liver disease. J Gastroenterol. 2008;43(11):811–22.

    Article  CAS  PubMed  Google Scholar 

  • Kamiyama T, et al. Identification of novel serum biomarkers of hepatocellular carcinoma using glycomic analysis. Hepatology. 2013;57(6):2314–25.

    Article  CAS  PubMed  Google Scholar 

  • Lakner AM, Bonkovsky HL, Schrum LW. MicroRNAs: fad or future of liver disease. World J Gastroenterol. 2011;17(20):2536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeRoith D, et al. Insulin-like growth factors and cancer. Ann Intern Med. 1995;122(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  • Li H, et al. A proton nuclear magnetic resonance metabonomics approach for biomarker discovery in nonalcoholic fatty liver disease. J Proteome Res. 2011;10(6):2797–806.

    Article  CAS  PubMed  Google Scholar 

  • Lim U, et al. Predicting total, abdominal, visceral and hepatic adiposity with circulating biomarkers in Caucasian and Japanese American women. PLoS One. 2012;7(8):e43502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchesini G, et al. Obesity-associated liver disease. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):S74–80.

    Article  CAS  PubMed  Google Scholar 

  • Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147(3):577–94.e1.

    Article  CAS  PubMed  Google Scholar 

  • Michikawa T, et al. Plasma levels of adiponectin and primary liver cancer risk in middle-aged Japanese adults with hepatitis virus infection: a nested case–control study. Cancer Epidemiol Biomarkers Prev. 2013;22(12):2250–7.

    Article  CAS  PubMed  Google Scholar 

  • Moschen AR, Wieser V, Tilg H. Adiponectin: key player in the adipose tissue-liver crosstalk. Curr Med Chem. 2012;19(32):5467–73.

    Article  CAS  PubMed  Google Scholar 

  • Naim Alkhouri MD, Kay MH, FACG MD. The cleveland clinic, cleveland, OH – Updated Dec 2012. http://patients.gi.org/topics/fatty-liver-disease-nafld

  • Nkontchou G, et al. Insulin resistance, serum leptin, and adiponectin levels and outcomes of viral hepatitis C cirrhosis. J Hepatol. 2010;53(5):827–33.

    Article  CAS  PubMed  Google Scholar 

  • Ohishi W, et al. Serum interleukin-6 associated with hepatocellular carcinoma risk: a nested case–control study. Int J Cancer. 2014;134(1):154–63.

    Article  PubMed  Google Scholar 

  • Park JE, et al. Differential expression of intermediate filaments in the process of develo** hepatic steatosis. Proteomics. 2011;11(14):2777–89.

    Article  CAS  PubMed  Google Scholar 

  • Polyzos SA, et al. The potential adverse role of leptin resistance in nonalcoholic fatty liver disease: a hypothesis based on critical review of the literature. J Clin Gastroenterol. 2011;45(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  • Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism. 2015;56:8029.

    Google Scholar 

  • Polyzos SA, et al. Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Diabetologia. 2016;59(1):30–43.

    Article  CAS  PubMed  Google Scholar 

  • Qiao L, Li X. Role of chronic inflammation in cancers of the gastrointestinal system and the liver: where we are now. Cancer Lett. 2014;345(2):150–2.

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, et al. Leptin-leptin receptor are involved in angiogenesis in human hepatocellular carcinoma. Peptides. 2008;29(9):1596–602.

    Article  CAS  PubMed  Google Scholar 

  • Roessner U, et al. Metabolic profiling allows comprehensive phenoty** of genetically or environmentally modified plant systems. Plant Cell. 2001;13(1):11–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong X, et al. The association between body mass index and the prognosis and postoperative complications of hepatocellular carcinoma: a meta-analysis. Medicine (Baltimore). 2015;94(31):e1269.

    Article  CAS  Google Scholar 

  • Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91(3):827–87.

    Article  CAS  PubMed  Google Scholar 

  • Scharf JG, Ramadori G, Dombrowski F. Analysis of the IGF axis in preneoplastic hepatic foci and hepatocellular neoplasms develo** after low-number pancreatic islet transplantation into the livers of streptozotocin diabetic rats. Lab Invest. 2000;80(9):1399–411.

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger S, et al. Abdominal obesity, weight gain during adulthood and risk of liver and biliary tract cancer in a European cohort. Int J Cancer. 2013;132(3):645–57.

    Article  CAS  PubMed  Google Scholar 

  • Shah NR, Braverman ER. Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS One. 2012;7(4):e33308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah N, Nelson JE, Kowdley KV. MicroRNAs in liver disease: bench to bedside. J Clin Exp Hepatol. 2013;3(3):231–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, et al. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers. J Hepatol. 2012;56(6):1363–70.

    Article  CAS  PubMed  Google Scholar 

  • Siegel AB, et al. Serum adiponectin is associated with worsened overall survival in a prospective cohort of hepatocellular carcinoma patients. Oncology. 2015;88(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  • Stauffer JK, et al. Chronic inflammation, immune escape, and oncogenesis in the liver: a unique neighborhood for novel intersections. Hepatology. 2012;56(4):1567–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepien M, et al. Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers: findings from a prospective cohort study. Int J Cancer. 2016;138(2):348–60.

    Article  CAS  PubMed  Google Scholar 

  • Stojsavljevic S, et al. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20(48):18070–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torre LA, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  • van Dijk SJ, et al. Plasma protein profiling reveals protein clusters related to BMI and insulin levels in middle-aged overweight subjects. PLoS One. 2010;5(12):e14422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanni E, et al. From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis. 2010;42(5):320–30.

    Article  CAS  PubMed  Google Scholar 

  • Vincent R, Sanyal A. Recent advances in understanding of NASH: microRNAs as both biochemical markers and players. Curr Pathobiol Rep. 2014;2(3):109–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Loeffelholz C, et al. Fetuin A is a predictor of liver fat in preoperative patients with nonalcoholic fatty liver disease. J Invest Surg. 2016;16:1–9.

    Google Scholar 

  • Wieser V, Moschen AR, Tilg H. Adipocytokines and hepatocellular carcinoma. Dig Dis. 2012;30(5):508–13.

    Article  PubMed  Google Scholar 

  • World Cancer Research Fund International/American Institute for Cancer Research. Continuous update project report: diet, nutrition, physical activity and liver cancer. 2015. Available at www.wcrf.org/sites/default/files/Liver-Cancer-2015-Report.pdf. Accessed 30 April 2016.

  • World Health Organization February 2015. Fact sheet: cancer. Available online http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 30 Aug 2015.

  • Wree A, et al. Obesity affects the liver – the link between adipocytes and hepatocytes. Digestion. 2011;83(1–2):124–33.

    Article  PubMed  Google Scholar 

  • Yu C, et al. Serum proteomic analysis revealed diagnostic value of hemoglobin for nonalcoholic fatty liver disease. J Hepatol. 2012;56(1):241–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krasimira Aleksandrova , Sabrina Schlesinger or Marta Stelmach-Mardas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Aleksandrova, K., Schlesinger, S., Stelmach-Mardas, M. (2016). Biomarkers Associated with Adiposity and Metabolic Dysfunction in Hepatobiliary Tract Cancer. In: Preedy, V. (eds) Biomarkers in Liver Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7742-2_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7742-2_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7742-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation