CD133 and EpCAM as Biomarkers in Liver Diseases

  • Living reference work entry
  • First Online:
Biomarkers in Liver Disease

Abstract

Liver cancer is the sixth commonest malignancy and the second leading cause of cancer-associated death worldwide in 2012. Tumor recurrence after curative treatment and resistance to chemo-/radiotherapy are two important factors contributing to poor prognosis of liver cancer. Cancer stem cell (CSC) is postulated to be responsible for tumor initiation, recurrence, dissemination, and therapeutic resistance. CD133 and EpCAM are putative stemness markers of stem/progenitor cells and CSC in the liver. CD133 has unclear normal physiological function but is suggested to be in intercellular communication. Several aberrant signaling pathways are participated in CD133-positive hepatic cancers: Hedgehog, mTOR, IL-8/CXCL1, BMP/Smad, MAPK/Erk, and hypoxia-inducible factor 1-α/Notch signaling pathways. EpCAM has complex physiological functions including cell-cell adhesion, regulation of proliferation, differentiation, migration, and cell survival. Wnt/β-catenin signaling pathway is the major pathway involved in EpCAM-positive hepatic cancers. CD133 and EpCAM have several significant clinical implications in diagnosis, prognosis, and therapy of human liver cancers. Recently defined histological types of liver cancer, namely, combined hepatocellular-cholangiocarcinoma with stem cell features and hepatocellular carcinoma expressing stemness marker, require CD133, EpCAM, and/or other stemness markers to establish the diagnosis. CD133 and EpCAM are also important prognostic biomarkers. CD133 is expressed in 22.0 ± 12.1 % of hepatocellular carcinoma and associated with higher histological grade, more advanced tumor stage, and worse overall and disease-free survival. EpCAM is expressed in 32.4 ± 12.8 % of hepatocellular carcinoma and associated with younger age, higher histological grade, vascular invasion, more advanced tumor stage, and worse overall and disease-free survival. The prognostic roles of CD133 and EpCAM in intrahepatic cholangiocarcinoma and hepatoblastoma are less well defined. Although targeted therapies against CD133 and EpCAM against liver cancers are still in preclinical stages, they are promising new therapeutic research areas to combat the key player, cancer stem cell, responsible for tumor recurrence and therapeutic resistance liver cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFP:

Alpha-fetoprotein

AJCC:

American Joint Committee on Cancer

BCLC:

Barcelona clinic liver cancer

BMP:

Bone morphogenetic protein

CAM:

Cell adhesion molecule

CK19:

Cytokeratin 19

CSC:

Cancer stem cell

CXCL1:

Chemokine C-X-C motif ligand 1

DNMT:

DNA methyltransferase

EpCAM:

Epithelial cell adhesion molecule

EpEx:

EpCAM extracellular domain

EpICD:

EpCAM intracytoplasmic domain

EZH2:

Enhancer of zeste homologue 2

HCC:

Hepatocellular carcinoma

HCC-CC:

Combined hepatocellular-cholangiocarcinoma

HH:

Hedgehog

HSPC:

Hepatic stem/progenitor cell

IHCC:

Intrahepatic cholangiocarcinoma

IL-8:

Interleukin-8

Line-1:

Long interspersed nucleotide element-1

MAPK:

Mitogen-activated protein kinase

miR:

microRNA

mTOR:

Mechanistic target of rapamycin

NCAM:

Neural cell adhesion molecule

TGF:

Transforming growth factor

TP53INP1:

Tumor protein 53-induced nuclear protein 1

TROP1:

Trophoblast cell-surface antigen 1

References

  • Ajani JA, Song S, Hochster HS, et al. Cancer stem cells: the promise and the potential. Semin Oncol. 2015;42 Suppl 1:S3–17.

    Article  CAS  PubMed  Google Scholar 

  • Akamatsu N, Sugawara Y, Tamura S, et al. Regeneration and function of hemiliver graft: right versus left. Surgery. 2006;139:765–72.

    Article  PubMed  Google Scholar 

  • Akiba J, Nakashima O, Hattori S, et al. Clinicopathologic analysis of combined hepatocellular-cholangiocarcinoma according to the latest WHO classification. Am J Surg Pathol. 2013;37:496–505.

    Article  PubMed  Google Scholar 

  • Bae JS, Noh SJ, Jang KY, et al. Expression and role of epithelial cell adhesion molecule in dysplastic nodule and hepatocellular carcinoma. Int J Oncol. 2012;41:2150–8.

    CAS  PubMed  Google Scholar 

  • Bahnassy AA, Fawzy M, El-Wakil M, et al. Aberrant expression of cancer stem cell markers (CD44, CD90, and CD133) contributes to disease progression and reduced survival in hepatoblastoma patients: 4-year survival data. Transl Res. 2015;165:396–406.

    Article  CAS  PubMed  Google Scholar 

  • Bodzin AS, Wei Z, Hurtt R, et al. Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation. J Cell Physiol. 2012;227:2947–52.

    Article  CAS  PubMed  Google Scholar 

  • Chai S, Tong M, Ng KY, et al. Regulatory role of miR-142-3p on the functional hepatic cancer stem cell marker CD133. Oncotarget. 2014;5:5725–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan AW, Tong JH, Chan SL, et al. Expression of stemness markers (CD133 and EpCAM) in prognostication of hepatocellular carcinoma. Histopathology. 2014;64:935–50.

    Article  PubMed  Google Scholar 

  • Chan SL, Chan AW, Yeo W. Novel therapeutic targets and predictive markers for hepatocellular carcinoma. Expert Opin Ther Targets. 2015;19:973–83.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Lingala S, Khoobyari S, et al. Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations. J Hepatol. 2011;55:838–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiba T, Kita K, Zheng YW, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology. 2006;44:240–51.

    Article  CAS  PubMed  Google Scholar 

  • Chiba T, Suzuki E, Negishi M, et al. 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. Int J Cancer. 2012;130:2557–67.

    Article  CAS  PubMed  Google Scholar 

  • Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham F, Amode MR, Barrell D, et al. Ensembl 2015. Nucleic Acids Res. 2015;43:D662–9.

    Article  PubMed  Google Scholar 

  • de Boer CJ, van Krieken JH, Janssen-van Rhijn CM, et al. Expression of Ep-CAM in normal, regenerating, metaplastic, and neoplastic liver. J Pathol. 1999;188:201–6.

    Article  PubMed  Google Scholar 

  • Dolle L, Theise ND, Schmelzer E, et al. EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol. 2015;308:G233–50.

    Article  CAS  PubMed  Google Scholar 

  • Fan L, He F, Liu H, et al. CD133: a potential indicator for differentiation and prognosis of human cholangiocarcinoma. BMC Cancer. 2011;11:320.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 [Internet]. 2012. Available at: http://globocan.iarc.fr. Accessed 20 Jan 2014.

  • Fujii T, Fuchs BC, Yamada S, et al. Mouse model of carbon tetrachloride induced liver fibrosis: histopathological changes and expression of CD133 and epidermal growth factor. BMC Gastroenterol. 2010;10:79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grosse-Gehling P, Fargeas CA, Dittfeld C, et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol. 2013;229:355–78.

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara S, Kudo M, Nagai T, et al. Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. Br J Cancer. 2012;106:1997–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006;24:506–13.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Harada K, Sato Y, et al. Clinicopathologic significance of combined hepatocellular-cholangiocarcinoma with stem cell subtype components with reference to the expression of putative stem cell markers. Am J Clin Pathol. 2013;140:329–40.

    Article  PubMed  Google Scholar 

  • Jeng KS, Sheen IS, Jeng WJ, et al. Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1–6 cells. Oncol Targets Ther. 2013;6:1047–55.

    Article  CAS  Google Scholar 

  • Ji J, Yamashita T, Budhu A, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50:472–480.

    Google Scholar 

  • Kim H, Park C, Han KH, et al. Primary liver carcinoma of intermediate (hepatocyte-cholangiocyte) phenotype. J Hepatol. 2004;40:298–304.

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Choi GH, Na DC, et al. Human hepatocellular carcinomas with “Stemness”-related marker expression: keratin 19 expression and a poor prognosis. Hepatology. 2011;54:1707–17.

    Article  CAS  PubMed  Google Scholar 

  • Kimura O, Takahashi T, Ishii N, et al. Characterization of the epithelial cell adhesion molecule (EpCAM)+ cell population in hepatocellular carcinoma cell lines. Cancer Sci. 2010;101:2145–55.

    Article  CAS  PubMed  Google Scholar 

  • Koh KC, Lee H, Choi MS, et al. Clinicopathologic features and prognosis of combined hepatocellular cholangiocarcinoma. Am J Surg. 2005;189:120–5.

    Article  PubMed  Google Scholar 

  • Li L, Liu Y, Guo Y, et al. Regulatory MiR-148a-ACVR1/BMP circuit defines a cancer stem cell-like aggressive subtype of hepatocellular carcinoma. Hepatology. 2015;61:574–584.

    Google Scholar 

  • Liu F, Kong X, Lv L, et al. TGF-beta1 acts through miR-155 to down-regulate TP53INP1 in promoting epithelial-mesenchymal transition and cancer stem cell phenotypes. Cancer Lett. 2015;359:288–98.

    Article  PubMed  Google Scholar 

  • Ma S. Biology and clinical implications of CD133(+) liver cancer stem cells. Exp Cell Res. 2013;319:126–32.

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132:2542–56.

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Chan KW, Lee TK, et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res. 2008a;6:1146–53.

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Lee TK, Zheng BJ, et al. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008b;27:1749–58.

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Tang KH, Chan YP, et al. miR-130b promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7:694–707.

    Article  CAS  PubMed  Google Scholar 

  • Ma YC, Yang JY, Yan LN. Relevant markers of cancer stem cells indicate a poor prognosis in hepatocellular carcinoma patients: a meta-analysis. Eur J Gastroenterol Hepatol. 2013;25:1007–16.

    Article  CAS  PubMed  Google Scholar 

  • Mishra L, Banker T, Murray J, et al. Liver stem cells and hepatocellular carcinoma. Hepatology. 2009;49:318–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakashima O, Curado MP, Franceshi S, et al. Intrahepatic cholangiocarcinoma. In: Bosman FT, Carneiro F, Hruban RH, et al., editors. WHO classification of tumours of the digestive system. Lyon: International Agency for Research on Cancer; 2010. p. 217–24.

    Google Scholar 

  • Nguyen LV, Vanner R, Dirks P, et al. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12:133–43.

    CAS  PubMed  Google Scholar 

  • Ogawa K, Tanaka S, Matsumura S, et al. EpCAM-targeted therapy for human hepatocellular carcinoma. Ann Surg Oncol. 2014;21:1314–22.

    Article  PubMed  Google Scholar 

  • Pan QZ, Pan K, Wang QJ, et al. Annexin A3 as a potential target for immunotherapy of liver cancer stem-like cells. Stem Cells. 2015;33:354–66.

    Article  CAS  PubMed  Google Scholar 

  • Piao LS, Hur W, Kim TK, et al. CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 2012;315:129–37.

    Article  CAS  PubMed  Google Scholar 

  • Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene. 2006;25:3818–22.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Sato H, Kakuda Y, et al. Clinicopathological significance of ‘subtypes with stem-cell feature’ in combined hepatocellular-cholangiocarcinoma. Liver Int. 2015;35:1024–35.

    Article  PubMed  Google Scholar 

  • Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441:1075–9.

    Article  CAS  PubMed  Google Scholar 

  • Seok JY, Na DC, Woo HG, et al. A fibrous stromal component in hepatocellular carcinoma reveals a cholangiocarcinoma-like gene expression trait and epithelial-mesenchymal transition. Hepatology. 2012;55:1776–86.

    Article  CAS  PubMed  Google Scholar 

  • Shimada M, Sugimoto K, Iwahashi S, et al. CD133 expression is a potential prognostic indicator in intrahepatic cholangiocarcinoma. J Gastroenterol. 2010;45:896–902.

    Article  CAS  PubMed  Google Scholar 

  • Simon M, Stefan N, Pluckthun A, et al. Epithelial cell adhesion molecule-targeted drug delivery for cancer therapy. Expert Opin Drug Deliv. 2013;10:451–68.

    Article  CAS  PubMed  Google Scholar 

  • Smith LM, Nesterova A, Ryan MC, et al. CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer. 2008;99:100–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner PE, Higginson J. Cholangiolocellular carcinoma of the liver. Cancer. 1959;12:753–9.

    Article  CAS  PubMed  Google Scholar 

  • Suetsugu A, Nagaki M, Aoki H, et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun. 2006;351:820–4.

    Article  CAS  PubMed  Google Scholar 

  • Sulpice L, Rayar M, Turlin B, et al. Epithelial cell adhesion molecule is a prognosis marker for intrahepatic cholangiocarcinoma. J Surg Res. 2014;192:117–23.

    Article  CAS  PubMed  Google Scholar 

  • Sun YF, Xu Y, Yang XR, et al. Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology. 2013;57:1458–68.

    Article  CAS  PubMed  Google Scholar 

  • Tang KH, Ma S, Lee TK, et al. CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology. 2012;55:807–20.

    Article  CAS  PubMed  Google Scholar 

  • Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol. 2004;5:836–47.

    Article  CAS  PubMed  Google Scholar 

  • Terris B, Cavard C, Perret C. EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. J Hepatol. 2010;52:280–1.

    Article  CAS  PubMed  Google Scholar 

  • Thanan R, Pairojkul C, Pinlaor S, et al. Inflammation-related DNA damage and expression of CD133 and Oct3/4 in cholangiocarcinoma patients with poor prognosis. Free Radic Biol Med. 2013;65:1464–72.

    Article  CAS  PubMed  Google Scholar 

  • Theise ND, Saxena R, Portmann BC, et al. The canals of Hering and hepatic stem cells in humans. Hepatology. 1999;30:1425–33.

    Article  CAS  PubMed  Google Scholar 

  • Theise ND, Yao JL, Harada K, et al. Hepatic ‘stem cell’ malignancies in adults: four cases. Histopathology. 2003;43:263–71.

    Article  CAS  PubMed  Google Scholar 

  • Theise ND, Curado MP, Franceshi S, et al. Hepatocellular carcinoma. In: Bosman FT, Carneiro F, Hruban RH, et al., editors. WHO classification of tumours of the digestive system. Lyon: International Agency for Research on Cancer; 2010a. p. 205–16.

    Google Scholar 

  • Theise ND, Nakashima O, Park YN, et al. Combined hepatocellular-cholangiocarcinoma. In: Bosman FT, Carneiro F, Hruban RH, et al., editors. WHO classification of tumours of the digestive system. Lyon: International Agency for Research on Cancer; 2010b. p. 225–7.

    Google Scholar 

  • Tsuchiya A, Kamimura H, Takamura M, et al. Clinicopathological analysis of CD133 and NCAM human hepatic stem/progenitor cells in damaged livers and hepatocellular carcinomas. Hepatol Res. 2009;39:1080–90.

    Article  PubMed  Google Scholar 

  • Van Eyken P, Sciot R, Paterson A, et al. Cytokeratin expression in hepatocellular carcinoma: an immunohistochemical study. Hum Pathol. 1988;19:562–8.

    Article  PubMed  Google Scholar 

  • Williams MJ, Clouston AD, Forbes SJ. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology. 2014;146:349–56.

    Article  PubMed  Google Scholar 

  • Winter MJ, Nagelkerken B, Mertens AE, et al. Expression of Ep-CAM shifts the state of cadherin-mediated adhesions from strong to weak. Exp Cell Res. 2003;285:50–8.

    Article  CAS  PubMed  Google Scholar 

  • **a H, Ooi LL, Hui KM. MiR-214 targets beta-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma. PLoS One. 2012;7:e44206.

    Google Scholar 

  • Yamashita T, Budhu A, Forgues M, et al. Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res. 2007;67:10831–9.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Ji J, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136:1012–24.

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhang L, Ma A, et al. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations. PLoS One. 2011;6:e28405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120:1444–50.

    Article  CAS  PubMed  Google Scholar 

  • You H, Ding W, Rountree CB. Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology. 2010;51:1635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun WJ, Shin E, Lee K, et al. Clinicopathologic implication of hepatic progenitor cell marker expression in hepatoblastoma. Pathol Res Pract. 2013;209:568–73.

    Article  CAS  PubMed  Google Scholar 

  • Zen C, Zen Y, Mitry RR, et al. Mixed phenotype hepatocellular carcinoma after transarterial chemoembolization and liver transplantation. Liver Transpl. 2011;17:943–54.

    Article  PubMed  Google Scholar 

  • Zeng Z, Ren J, O'Neil M, et al. Impact of stem cell marker expression on recurrence of TACE-treated hepatocellular carcinoma post liver transplantation. BMC Cancer. 2012;12:584.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Theise N, Chua M, et al. The stem cell niche of human livers: symmetry between development and regeneration. Hepatology. 2008;48:1598–607.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Xu Y, Zhao J, et al. Elevated expression of the stem cell marker CD133 associated with Line-1 demethylation in hepatocellular carcinoma. Ann Surg Oncol. 2011;18:2373–80.

    Article  PubMed  Google Scholar 

  • Zhang J, Luo N, Luo Y, et al. microRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. Int J Oncol. 2012a;40:747–56.

    CAS  PubMed  Google Scholar 

  • Zhang L, Sun H, Zhao F, et al. BMP4 administration induces differentiation of CD133+ hepatic cancer stem cells, blocking their contributions to hepatocellular carcinoma. Cancer Res. 2012b;72:4276–85.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Hao X, Yan M, et al. Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer. 2010;126:2067–78.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann A, Saxena R. Hepatoblastoma. In: Bosman FT, Carneiro F, Hruban RH, et al., editors. WHO classification of tumours of the digestive system. Lyon: International Agency for Research on Cancer; 2010. p. 228–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Fai To .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Chan, A.W.H., To, KF. (2015). CD133 and EpCAM as Biomarkers in Liver Diseases. In: Preedy, V. (eds) Biomarkers in Liver Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7742-2_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7742-2_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7742-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation