Theory of Giant Magnetoresistance and Tunneling Magnetoresistance

  • Reference work entry
Handbook of Spintronics

Abstract

This chapter describes the theory of the giant magnetoresistance effect and the tunneling magnetoresistance effect. Giant magnetoresistance and tunneling magnetoresistance arise when a magnetic field reorients the magnetization in different regions of a specimen causing a change in electrical resistance. Typically these regions are different ultrathin layers. Giant magnetoresistance can occur in metallic multilayers. Two geometries are important. Current-in-plane GMR was the first “spintronic” effect and was discovered in 1988. Current-perpendicular-to-plane GMR was observed a few years later and is conceptually easier to understand than current-in-plane GMR. In this chapter both of these phenomena are treated in a semiclassical approximation. For current-in-plane GMR, it is necessary to treat the transport as nonlocal. For current-perpendicular-to-plane GMR, a local approximation is often adequate. Tunneling magnetoresistance arises when quantum mechanical tunneling between ferromagnetic electrodes through an insulating layer depends on the relative orientation of the magnetizations of the two electrodes. In this chapter, tunneling magnetoresistance is treated using the Landauer approach which envisions ballistic electrons traveling between reservoirs with given chemical potentials being transmitted or reflected by the insulating layer. The tunneling current through the layer is carried by the evanescent states. The properties of these evanescent states and how they join to those electronic states near the Fermi energy of the electrodes for the majority and minority spin channels can be important for the size of the tunneling magnetoresistance effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP:

Antiparallel

bcc:

Body-centered cubic

CIP:

Current-in-plane

CPP:

Current-perpendicular-to-plane

FERPS:

Free electrons with random point scatterers

FM:

Ferromagnetic

GMR:

Giant magnetoresistance

MR:

Magnetoresistance

MTJ:

Magnetic tunnel junction

P:

Parallel

SAF:

Synthetic antiferromagnet

TMR:

Tunneling magnetoresistance

XMCD:

X-ray magnetic circular dichroism

References

  1. Dirac PAM (1928) The quantum theory of the electron. Proc R Soc Lond A 117:610–624

    Article  ADS  MATH  Google Scholar 

  2. Grünberg P, Schreiber R, Pang Y, Brodsky MB, Sowers H (1986) Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys Rev Lett 57(19):2442–2445

    Article  ADS  Google Scholar 

  3. Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices. Phys Rev Lett 61(21):2472–2475

    Article  ADS  Google Scholar 

  4. Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39(7):4828–4830

    Article  ADS  Google Scholar 

  5. Pratt WP, Lee S-F, Slaughter JM, Loloee R, Schroeder PA, Bass J (1991) Perpendicular giant magnetoresistances of Ag/Co multilayers. Phys Rev Lett 66(23):3060–3063

    Article  ADS  Google Scholar 

  6. Bozorth RM (1951) Ferromagnetism. D. van Norstrand, New York, p 441

    Google Scholar 

  7. Chikazumi S (1964) Physics of magnetism. Wiley, New York, p 73

    Google Scholar 

  8. van den Berg HAM, Clemens W, Gieres G, Rupp G, Schelter W, Vieth M (1996) GMR sensor scheme with artificial antiferromagnetic subsystem. IEEE Trans Magn 32(5):4624–4626

    Article  ADS  Google Scholar 

  9. Valet T, Fert A (1993) Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys Rev B 48(10):7099–7113

    Article  ADS  Google Scholar 

  10. Mark J, Silsbee RH (1987) Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys Rev B 35(10):4959–4972

    Article  Google Scholar 

  11. Zhang X-G, Butler WH (1995) Conductivity of metallic films and multilayers. Phys Rev B 51(15):10085–10103

    Article  ADS  Google Scholar 

  12. Chambers RG (1950) The conductivity of thin wires in a magnetic field. Proc R Soc A 202(1070):378–394

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Camblong HE, Levy PM (1992) Novel results for quasiclassical linear transport in metallic multilayers. Phys Rev Lett 69(19):2835–2838

    Article  ADS  Google Scholar 

  14. Fuchs K (1938) The conductivity of thin metallic films according to the electron theory of metals. Math Proc Camb Philos Soc 34(1):100–108

    Article  ADS  Google Scholar 

  15. Sondheimer EH (1952) The mean free path of electrons in metals. Adv Phys 1(1):1–42

    Article  ADS  Google Scholar 

  16. MacLaren JM, Zhang X-G, Butler WH, Wang X (1999) Layer KKR approach to Bloch-wave transmission and reflection: application to spin-dependent tunneling. Phys Rev B 59(8):5470–5478

    Article  ADS  Google Scholar 

  17. Butler WH, Zhang X-G, Nicholson DMC, Schulthess TC, MacLaren JM (1996) Giant magnetoresistance from an electron waveguide effect in cobalt-copper multilayers. Phys Rev Lett 76(17):3216–3219

    Article  ADS  Google Scholar 

  18. Butler WH, Zhang X-G, MacLaren JM (2000) Solution to the boltzmann equation for layered systems for current perpendicular to the planes. J Appl Phys 87(9):5173–5175

    Article  ADS  Google Scholar 

  19. Stewart DA, Butler WH, Zhang X-G, Los VF (2003) Interfacial scattering in magnetic multilayers and spin valves. Phys Rev B 68(1):014433

    Article  ADS  Google Scholar 

  20. Julliere M (1975) Tunneling between ferromagnetic films. Phys Lett A 54(1):225–226

    Article  ADS  Google Scholar 

  21. Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1(3):223–231

    Article  MathSciNet  Google Scholar 

  22. Slonczewski JC (1989) Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys Rev B 39(10):6995–7002

    Article  ADS  Google Scholar 

  23. Butler WH, Zhang X-G, Schulthess TC, MacLaren JM (2001) Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys Rev B 63(5):054416

    Article  ADS  Google Scholar 

  24. Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater 3(12):868–871

    Article  ADS  Google Scholar 

  25. Zhang X-G, Yan W, Han XF (2008) Theory of nonspecular tunneling through magnetic tunnel junctions. Phys Rev B 77(14):144431

    Article  ADS  Google Scholar 

  26. Matsumoto R, Fukushima A, Nagahama T, Suzuki Y, Ando K, Yuasa S (2007) Oscillation of giant tunneling magnetoresistance with respect to tunneling barrier thickness in fully epitaxial Fe/MgO/Fe magnetic tunnel junctions. Appl Phys Lett 90(25):252506

    Article  ADS  Google Scholar 

  27. Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH (2004) Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater 3(12):862–867

    Article  ADS  Google Scholar 

  28. Yuasa S, Djayaprawira DD (2007) Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(001) barrier. J Phys D Appl Phys 40(21):R337–R354

    Article  ADS  Google Scholar 

  29. Yuasa S, Suzuki Y, Katayama T, Ando K (2005) Characterization of growth and crystallization processes in CoFeB/MgO/CoFeB magnetic tunnel junction structure by reflective high-energy electron diffraction. Appl Phys Lett 87(24):242503

    Article  ADS  Google Scholar 

  30. Cha JJ, Read JC, Buhrman RA, Muller DA (2007) Spatially resolved electron energy-loss spectroscopy of electron-beam grown and sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett 91(6):062516

    Article  ADS  Google Scholar 

  31. Read JC, Cha JJ, Egelhoff WF Jr, Tseng HW, Huang PY, Li Y, Muller DA, Buhrman RA (2009) High magnetoresistance tunnel junctions with MgBO barriers and NiFeB free electrodes. Appl Phys Lett 94(11):112504

    Article  ADS  Google Scholar 

  32. Yuasa S, Katayama T, Nagahama T, Fukushima A, Kubota H, Suzuki Y, Ando K (2005) Giant tunneling magnetoresistance in fully epitaxial body-centered-cubic Co/MgO/Fe magnetic tunnel junctions. Appl Phys Lett 87(24):222508

    Article  ADS  Google Scholar 

  33. Yuasa S, Fukushima A, Kubota H, Suzuki Y, Ando K (2006) Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial Co/MgO/Co magnetic tunnel junctions with bcc Co(001) electrodes. Appl Phys Lett 89(4):042505

    Article  ADS  Google Scholar 

  34. Yan W, Han XF, Zhang X-G (2008) Effect of Co interlayers in Fe/MgO/Fe magnetic tunnel junctions. Appl Phys Lett 93(17):172501

    Article  ADS  Google Scholar 

  35. Belashchenko KD, Velev J, Tsymbal EY (2005) Effect of interface states on spin-dependent tunneling in Fe/MgO/Fe tunnel junctions. Phys Rev B 72(14):140404

    Article  ADS  Google Scholar 

  36. Wang Y, Jia Z, Zhang X-G, Hai-** C, Han XF (2010) First-principles study of Fe/MgO based magnetic tunnel junctions with Mg interlayers. Phys Rev B 82(5):054405

    Article  ADS  Google Scholar 

  37. Jia Z, Zhang X-G, Han XF (2012) Spinel oxides: 1 spin-filter barrier for a class of magnetic tunnel junctions. Appl Phys Lett 100(22):222401

    Article  ADS  Google Scholar 

  38. Sukegawa H, **u H, Ohkubo T, Furubayashi T, Niizeki T, Wang W, Kasai S, Mitani S, Inomata K, Hono K (2010) Tunnel magnetoresistance with improved bias voltage dependence in lattice-matched Fe/spinel MgAl2O4/Fe(001) junctions. Appl Phys Lett 96(21):212505

    Article  ADS  Google Scholar 

  39. Gurney BA, Speriosu VS, Nozieres J-P, Lefakis H, Wilhoit DR, Need OU (1993) Direct measurement of spin-dependent conduction-electron mean free paths in ferromagnetic metals. Phys Rev Lett 71(24):4023–4026

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoguang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Zhang, X., Butler, W. (2016). Theory of Giant Magnetoresistance and Tunneling Magnetoresistance. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_2

Download citation

Publish with us

Policies and ethics

Navigation