Adaptation of Irrigated and Rainfed Agriculture to Climate Change: The Vulnerability of Production Systems and the Potential of Intraspecific Biodiversity (Case Studies in Italy)

  • Reference work entry
Handbook of Climate Change Adaptation

Abstract

This chapter addresses the biophysical dimension of adaptation. A framework is developed and applied to evaluate options for adaptation in different and relevant Italian agricultural crop** systems. Adaptation options rely on the identification of alternate cultivars optimally adapted to expected climate conditions, building on crops’ intraspecific biodiversity. The aim is to remove or at least reduce the vulnerability of current production systems by identifying alternate cultivars optimally adapted to expected climate conditions, without altering the pattern of current species and production systems.

A new approach is proposed to (i) evaluate indicators of expected thermal and hydrologic conditions within a specific landscape and production system, (ii) identify the cultivar-specific thermal and hydrologic requirements for the optimal growth of a set of cultivars, and (iii) identify as options for adaptation the cultivars for which expected climate conditions match the climatic requirements. A robust methodology is provided to assess adaptive capacity, relying on mechanistic simulation models and on the identification of cultivar-specific climatic conditions required for optimal development and yield.

The approach is demonstrated through three case studies on (a) rainfed agriculture, (b) irrigated herbaceous crops, and (c) irrigated fruit crops. For rainfed agriculture, we have identified cultivars adapted to climate predicted for the period 2021–2050. For irrigated crops, we have evaluated adaptability for irrigation schedules ranging from optimal to severely reduced water depths. Options for adaptations of herbaceous and fruit crops have been identified as a combination of cultivars and irrigation schedules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilera F, Ruiz L, Fornaciari M et al (2013) Heat accumulation period in the Mediterranean region: phenological response of the olive in different climate areas (Spain, Italy and Tunisia). Int J Biometeorol DOI 10.1007/s00484-013-0666-7

    Google Scholar 

  • Alfieri SM, De Lorenzi F, Menenti M (2013a) Map** air temperature using time series analysis of LST: the SINTESI approach. Non Linear Process Geophys 20:513–527

    Article  Google Scholar 

  • Alfieri SM, Riccardi M, Bonfante A et al (2013b) Olive cultivars’ adaptability to climate in Southern Italy. Italian Journal of Agrometeorology. In: Proceedings of the symposium: “Agroscenari: farmers, agricultural politics and research system in the face of climate change”, Ancona, 1–2 March 2012, pp 29–30

    Google Scholar 

  • Amerine MA, Winkler AJ (1944) Composition and quality of musts and wines of California grapes. University of California, Berkeley

    Google Scholar 

  • Basile A, Coppola A, De Mascellis R et al (2006) Scaling approach to deduce field unsaturated hydraulic properties and behavior from laboratory measurements on small cores. Vadose Zone J 5(3):1005–1016

    Article  Google Scholar 

  • Basra AS (2001) Crop responses and adaptations to temperature stress. Food Products Press, New York

    Google Scholar 

  • Battilani A, Ventura F (1996) Influence of water table, irrigation and rootstock on transpiration rate and fruit growth of peach trees. In: II international symposium on irrigation of horticultural crops, vol 449, pp 521–528

    Google Scholar 

  • Below TB, Mutabazi KD, Kirschke D et al (2012) Can farmers’ adaptation to climate change be explained by socio-economic household-level variables? Glob Environ Chang 22(1):223–235

    Article  Google Scholar 

  • Bonfante A, Basile A, Langella G et al (2011) A physically oriented approach to analysis and map** of terroirs. Geoderma 167–68:103–117

    Article  Google Scholar 

  • Bonfante A, Albrizio R, Basile A et al (2012) Soil-plant water status and wine quality: an physically based approach to terroir analysis. In: IXe Congrès International des Terroirs vitivinicoles 2012/IXe International Terroirs Congress 2012, Dijon/Reims, pp 27–29

    Google Scholar 

  • Bonfante A, Alfieri S M, Riccardi M et al (2013) Assessing climate change impacts on an irrigation scheme by hydrological modelling. In: Proceedings of the Symposium: “Agroscenari: farmers, agricultural politics and research system in the face of climate change”, Ancona, 1-2, March 2012. Italian Journal of Agrometeorology, pp 31–32

    Google Scholar 

  • Bongi G, Palliotti A (1994) Olive. In: Schaffer B, Andersen PC (eds) Handbook of environmental physiology of fruit crops, vol I. Temperate crops. CRC Press, New York

    Google Scholar 

  • Bonhomme R (2000) Bases and limits to using “degree.day” units. Eur J Agron 13(1):1–10

    Article  Google Scholar 

  • Boonprakob U, Byrne DH, Rouse RE (1992) Response of fruit development period to temperature during specific periods after full bloom in peach. Fruit Var J 46(3):137–140

    Google Scholar 

  • Challinor AJ, Ewert F, Arnold S et al (2009) Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. J Exp Bot 60(10):2775–2789

    Article  CAS  Google Scholar 

  • Challinor AJ, Smith MS, Thornton P (2013) Use of agro-climate ensembles for quantifying uncertainty and informing adaptation. Agric For Meteorol 170:2–7

    Article  Google Scholar 

  • Chartzoulakis K, Patakas A, Bosabalidis AM (1999) Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environ Exp Bot 42(2):113–120

    Article  Google Scholar 

  • Collins K, Ison R (2009) Editorial: living with environmental change: adaptation as social learning. Environ Policy Gov 19(6):351–357

    Article  Google Scholar 

  • Connor DJ (2005) Adaptation of olive (Olea europaea L.) to water-limited environments. Crop Pasture Sci 56(11):1181–1189

    Article  Google Scholar 

  • Connor DJ, Fereres E (2005) The physiology of adaptation and yield expression in olive. Hortic Rev 31:155–229

    CAS  Google Scholar 

  • Correa-Tedesco G, Rousseaux MC, Searles PS (2010) Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina. Agric Water Manag 97(11):1829–1837

    Article  Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 452:1–5

    Google Scholar 

  • Couvillon GA, Erez A (1985) Effect of level and duration of high temperatures on rest completion in peach. J Am Soc Hortic Sci 110:579–581

    Google Scholar 

  • Craufurd PQ, Vadez V, Jagadish SVK et al (2013) Crop science experiments designed to inform crop modeling. Agr Forest Meteorol 170:8–18

    Article  Google Scholar 

  • d’ Andria R, Lavini A, Morelli G et al (2008) Water management of olive trees (Olea europaea L.) in a hilly environment of Central- South Italy. Options Méditerranéennes 84:169–176

    Google Scholar 

  • Davies WJ, Wilkinson S, Loveys B (2002) Stomatal control by chemical signaling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153(3):449–460

    Article  CAS  Google Scholar 

  • De Lorenzi F, Bonfante A, Tomozeiu R et al (2010) Il segnale climatico sulle produzioni: interrelazioni tra strategie irrigue e risposte delle cultivars. In: Mastrorilli M (ed) XXXIX Convegno Nazionale della Società Italiana di Agronomia, Roma, 20–22 Sept 2010, pp 205–206

    Google Scholar 

  • De Lorenzi F, Bonfante A, Basile A, Alfieri SM, Monaco E, Menenti M (2013a) Assessing irrigated crops’ adaptability under future climate: the interplay of water management and cultivars’ responses. In: 1st CIGR inter-regional conference on land and water challenges, Bari, 10–14 Sept 2013

    Google Scholar 

  • De Lorenzi F, Missere D, Bongi G et al (2013b) Crops’ climate requirements to define adaptation options. In: Proceedings of the Symposium: “Agroscenari: farmers, agricultural politics and research system in the face of climate change”, Ancona, 1–2, March 2012. Italian Journal of Agrometeorology, pp 33–34

    Google Scholar 

  • Djaman K, Irmak S, Rathje WR et al (2013) Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation. Trans ASAE 56(2):273–293

    Google Scholar 

  • Elia A, Santamaria P (2013) Biodiversity in vegetable crops: a heritage to save. The case of the Puglia region. Ital J Agron 8(1):21–34

    Google Scholar 

  • Esposito S (2010) Prime Caratterizzazioni agro-climatiche delle aree di studio di Agroscenari mediante i dati dei nodi di griglia. Technical Note. Agroscenari, CRA CMA, Rome. www.agroscenari.it

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Centre for Agricultural Publishing and Documentation

    Google Scholar 

  • Fernandes-Silva AA, Ferreira TC, Correia CM et al (2010) Influence of different irrigation regimes on crop yield and water use efficiency of olive. Plant and Soil 333(1–2):35–47

    Article  CAS  Google Scholar 

  • Giorio P, Sorrentino G, d’Andria R (1999) Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environ Exp Bot 42:95–104

    Article  Google Scholar 

  • Girona J, Gelly M, Mata M et al (2005) Peach tree response to single and combined deficit irrigation regimes in deep soils. Agric Water Manag 72(2):97–108

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from ambient air temperature. American Society of Agricultural Engineers

    Google Scholar 

  • Huang KY, Zheng Z, François L et al (2010) Plants bioclimatic affinity groups in China: observed vs. simulated ranges. Open Ecol J 3:24–42

    Article  Google Scholar 

  • Iniesta F, Testi L, Orgaz F et al (2009) The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. Eur J Agron 30(4):258–265

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: impacts, adaptation and vulnerability. In: Fourth assessment report of the intergovernmental panel on Climate Change. Cambridge University, Cambridge, UK, p 976

    Google Scholar 

  • Istanbulluoglu A, Kocaman I, Koukou F (2002) Water use – production relationship of maize under tekirdag condition in Turkey. Pak J Biol Sci 3:287–291

    Google Scholar 

  • ISTAT (2011) Data warehouse of statistics produced by ISTAT-Italian National Institute of Statistics. http://dati.istat.it/?lang=en

  • ISTAT (2012) Data warehouse of statistics produced by ISTAT-Italian National Institute of Statistics. http://dati.istat.it/?lang=en

  • Jackson RS (2008) Wine science: principles and applications. Elsevier, Amsterdam [Online]

    Google Scholar 

  • Jagtap SS, Jones JW (2002) Adaptation and evaluation of the CROPGRO-soybean model to predict regional yield and production. Agric Ecosyst Environ 93:73–85

    Article  Google Scholar 

  • Jones GV (2006) Climate and terroir: impacts of climate variability and change on wine. In: Macqueen RW, Meinert LD (eds) Fine wine and terroir – the geoscience perspective, vol 9, Geoscience Canada reprint series. Geological Association of Canada, St. John’s

    Google Scholar 

  • Karam F, Breidy J, Stephan C et al (2003) Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon. Agric Water Manag 63(2):125–137

    Article  Google Scholar 

  • Kinet JM, Peet MM (1997) Tomato. In: Wien HC (ed) The physiology of vegetable crops. CAB International, New York, pp 207–258

    Google Scholar 

  • Kliewer WM (1977) Effect of high temperatures during the bloom-set period on fruit-set, ovule fertility, and berry growth of several grape cultivars. Am J Enol Vitic 28:215–222

    Google Scholar 

  • Kliewer WM, Torres RE (1972) Effect of controlled day and night temperatures on grape coloration. Am J Enol Vitic 23:71–77

    Google Scholar 

  • Kriedman PE (1968) Photosynthesis in vine leaves as function of light intensity, temperature and leaf age. Vitis 7:213–220

    Google Scholar 

  • Kroes JG, van Dam JC, Groenendijk P et al. (2008) Swap32 – theory description and user manual. Alterra report 1649, ISSN 1566-7197, Wageningen, p 262

    Google Scholar 

  • Lawler JJ, Tear TH, Pike C et al (2010) Resource management in a changing and uncertain climate. Front Ecol Environ 8(1):35–43

    Article  Google Scholar 

  • Lopez G, De Jong TM (2007) Spring temperatures have a major effect on early stages of peach fruit growth. J Hortic Sci Biotechnol 82(4):507–512

    Google Scholar 

  • Mainuddin M, Kirby M, Hoanh CT (2013) Impact of climate change on rainfed rice and options for adaptation in the lower Mekong Basin. Nat Hazards 66(2):905–938

    Article  Google Scholar 

  • Mariani L (2008) Italian agriculture and climatic risk. Ital J Agrometeorol 2:10–17

    Google Scholar 

  • Matthews MA, Anderson MM (1988) Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. Am J Enol Vitic 39(4):313–320

    Google Scholar 

  • Menenti M, De Lorenzi F, Bonfante A et al (2008) Biodiversità delle principali colture mediterranee: una risorsa per l’adattamento dell’agricoltura al clima che cambia. Ital J Agrometeorol 2:22–37

    Google Scholar 

  • Meza FJ, Silva D, Vigil H (2008) Climate change impacts on irrigated maize in Mediterranean climates: evaluation of double crop** as an emerging adaptation alternative. Agr Syst 98(1):21–30

    Article  Google Scholar 

  • Monaco E, Di Tommasi P, Alfieri SM, Bonfante A, De Lorenzi F, Menenti M (2012) Analisi della Risposta Produttiva di Cultivars di Mais in Ambiente Mediterraneo per l’Adattamento ai Cambiamenti Climatici. In: De Mastro G, Ventrella D, Verdini L (eds) XLI Convegno Nazionale della Società Italiana di Agronomia, Bari, 19–21 Sept 2012, pp 498–500

    Google Scholar 

  • Moriana A, Orgaz F, Pastor M et al (2003) Yield responses of a mature olive orchard to water deficits. J Am Soc Hortic Sci 128(3):425–431

    Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522

    Article  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, Cambridge

    Google Scholar 

  • Naor A (2006) Irrigation scheduling and evaluation of tree water status in deciduous orchards. Hortic Rev 32:111–165

    Google Scholar 

  • NeSmith D, Ritchie J (1992) Short-and long-term responses of corn to a pre-anthesis soil water deficit. Agron J 84(1):107–113

    Article  Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC et al (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34(2):96–112

    Article  Google Scholar 

  • Otegui ME, Andrade FH, Suero EE (1995) Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crop Res 40(2):87–94

    Article  Google Scholar 

  • Patanè C, Cosentino SL (2010) Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agric Water Manag 97:131–138

    Article  Google Scholar 

  • Payero JO, Melvin SR, Irmak S et al (2006) Yield response of corn to deficit irrigation in a semiarid climate. Agric Water Manag 84(1–2):101–112

    Article  Google Scholar 

  • Pebesma EJ, Wesseling CG (1998) GSTAT: a program for geostatistical modelling, prediction and simulation. Comput Geosci 24(1):17–31

    Article  Google Scholar 

  • Pejić B, Maheshwari B, Šeremešić S et al (2012) Water-yield relations of maize (Zea mays L) in temperate climatic conditions. Maydica 56(4):315–321

    Google Scholar 

  • Proebsting EL, Mills HH (1978) Low temperature resistance [frost hardiness] of develo** flower buds of six deciduous fruit species. J Am Soc Hortic Sci 103:192–198

    Google Scholar 

  • Reidsma P, Ewert F, Lansink AO et al (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32(1):91–102

    Article  Google Scholar 

  • Reyer CP, Leuzinger S, Rammig A et al (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob Chang Biol 19(1):75–89

    Article  Google Scholar 

  • Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. Hortic Sci 9:331–332

    Google Scholar 

  • Richardson EA, Anderson JL, Hatch AH et al (1982) ASYMCUR, an asymmetric curvilinear fruit tree model. XXI International Horticulture. Congress Abstracts II: 2078

    Google Scholar 

  • Roby G, Harbertson JF, Adams DA et al (2004) Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Aust J Grape Wine Res 10(2):100–107

    Article  CAS  Google Scholar 

  • Sakuma F, Umeya T, Tahita K, Hiyama H (1995) Effect of high temperature and gibberellin treatments during early fruit development on the occurrence of watercore in Japanese pear (Pyrus pyrifolia Nakai cv. Hosui). J Jpn Soc Hortic Sci 64:243–249

    Article  CAS  Google Scholar 

  • Santesteban LG, Royo B (2005) Water status, leaf area and fruit load influence on berry weight and sugar accumulation of cv ‘Tempranillo’ under semiarid conditions. Sci Hortic 109:60–65

    Article  Google Scholar 

  • Scaglione G, Pasquarella C, Federico R et al (2008) A multidisciplinary approach to grape- vine zoning using GIS technology: an example of thermal data elaboration. Vitis 47(2):131–132

    Google Scholar 

  • Seguin B, de Cortazar I G (2005) Climate warming: consequences for viticulture and the notion of ‘terroirs’ in Europe. In: Proceedings of the 7th international symposium on grapevine physiology and biotechnology 689:61–69

    Google Scholar 

  • Shaltout A, Unrath C (1983) Rest completion prediction model for starkrimson delicious apples. J Am Soc Hortic Sci 108(6):957–961

    Google Scholar 

  • Smit B, Skinner MW (2002) Adaptation options in agriculture to climate change: a typology. Mitig Adapt Strat Glob Chang 7:85–114

    Article  Google Scholar 

  • Steduto P, Hsiao TC, Raes D et al (2012) Crop yield response to water. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Supit I, van Diepen CA, De Wit AJW et al (2012) Assessing climate change effects on European crop yields using the crop growth monitoring system and a weather generator. Agr Forest Meteorol 164:96–111

    Article  Google Scholar 

  • Tank A, Konnen GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Climate 16(22):3665–3680

    Article  Google Scholar 

  • Terribile F, Di Gennaro A, De Mascellis R (1996) Carta dei suoli della Valle Telesina. Progetto U.O.T. Relazione finale convenzione CNR-ISPAIM-Regione Campania Assessorato alla Agricoltura

    Google Scholar 

  • Tognetti R, d’Andria R, Morelli G et al (2004) Irrigation effects on daily and seasonal variations of trunk sap flow and leaf water relations in olive trees. Plant and Soil 263:249–264

    Article  CAS  Google Scholar 

  • Tomozeiu R, Cacciamani C, Pavan V et al (2007) Climate change scenarios for surface temperature in Emilia-Romagna (Italy) obtained using statistical downscaling models. Theor Appl Climatol 90:25–47

    Article  Google Scholar 

  • Tomozeiu R, Agrillo G, Cacciamani C et al (2014) Statistically downscaled climate change projections of surface temperature over Northern Italy for the periods 2021–2050 and 2070–2099. Nat Hazards 72:143–168

    Article  Google Scholar 

  • Trenberth KE, Smith L, Qian TT et al (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8(4):758–769

    Article  Google Scholar 

  • Van der Linden P, Mitchell J (eds) (2009) ENSEMBLES: Climate Change and its Impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UK 160

    Google Scholar 

  • van Donk SJ, Petersen JL, Davison DR (2013) Effect of amount and timing of subsurface drip irrigation on corn yield. Irrigation Sci 31:599–609

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Ventrella D, Charfeddine M, Moriondo M et al (2012) Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization. Reg Environ Chang 12(3):407–419

    Article  Google Scholar 

  • Villani G, Tomei F, Tomozeiu R, Marletto V (2011) Climatic scenarios and their impacts on irrigated agriculture in Emilia-Romagna, Italy. Ital J Agrometeorol 1:5–17

    Google Scholar 

  • Wackernagel H (1998) Multivariate geostatistics: an introduction with applications, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Wösten JHM, Lilly A, Nemes A et al (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90(3):169–185

    Article  Google Scholar 

  • **loyannis C, Massai R, Dichio B (2005) L’acqua e la tecnica dell’irrigazione. In: Fideghelli C, Sansavini S (eds) Il pesco. Edagricole, Bologna, pp 145–171

    Google Scholar 

  • Xu W, Ren X, Johnston T et al (2012) Spatial and temporal variation in vulnerability of crop production to drought in southern Alberta. Can Geogr/Géogr Can 56(4):474–491

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M.8608/7303/2008).

The authors are grateful to colleagues at CNR-ISAFOM for supplying some cultivars’ data sets: dott. Riccardo d’Andria, Dr. Antonella Lavini, and dott. Giovanni Morelli for olive and Dr. Cristina Patanè for tomato. The contribution of CRPV (Research Center for Crop Production, Cesena, FC, Italy) that provided data on fruit crops is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Menenti .

Editor information

Editors and Affiliations

Glossary

Climate change

Statistically significant variation either in the mean state of the climate or in its variability, persisting for an extended period (typically decades or longer)

Climate variability

Variations in the mean state and other statistics (such as standard deviations, the occurrence of extremes, etc.) of the climate on all temporal and spatial scales beyond that of individual weather events

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Menenti, M. et al. (2015). Adaptation of Irrigated and Rainfed Agriculture to Climate Change: The Vulnerability of Production Systems and the Potential of Intraspecific Biodiversity (Case Studies in Italy). In: Leal Filho, W. (eds) Handbook of Climate Change Adaptation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38670-1_54

Download citation

Publish with us

Policies and ethics

Navigation