Genetics of Accessing and Exploiting Hydrocarbons

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Hydrocarbons abound in the environment and microorganisms are often capable of assimilating and degrading these normally recalcitrant molecules. In order to achieve this, bacteria have developed specific adaptive mechanisms; much of the adaptive response is brought about by transcriptional activation of genes and is controlled by one or two component regulatory systems, global regulators and DNA binding proteins. The expressed gene products are then able to degrade the molecules and often take advantage of the stored energy imparted by the physicochemical properties of the hydrocarbon structure. The response of gene regulators to the presence of hydrocarbons such as toluene in the environment allows initiation or inhibition of transcription, so that the rate of synthesis of metabolically important gene products is adaptively modified. Microorganisms which mount the most appropriate physiological adaptation are then able to proliferate in the changing environment. Here we give a comprehensive overview of adaptive regulation of the TOD and TOL pathways including the involvement of catabolite repression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aranda-Olmedo I, Marín P, Ramos JL, Marqués S (2006) Role of the pstN gene product in catabolite repression of Pseudomonas putida TOL toluene degradation pathway in chemostat cultures. Appl Environ Microbiol 72: 7418–7421.

    Article  PubMed  CAS  Google Scholar 

  • Ashby MK (2004) Survey of the number of two-component response regulator genes in the complete and annotated genome sequences of prokaryotes. FEMS Microbiol Lett 231(2): 277–281.

    Article  PubMed  CAS  Google Scholar 

  • Busch A, Lacal J, Marcos A, Ramos JL, Krell T (2007) Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proc Natl Acad Sci USA 104: 13774–13779.

    Article  PubMed  CAS  Google Scholar 

  • Cases I, Velázquez F, de Lorenzo V (2001) Role of ptsO in carbon mediated inhibition of the Pu promoter belonging to the pWW0 Pseudomonas putida plasmid. J Bacteriol 183: 5128–5133.

    Article  PubMed  CAS  Google Scholar 

  • Dagley S (1981) New perspectives in aromatic catabolism. In Degradation of Xenobiotics and Recalcitrant Compounds. T Leisinger, AM Cook, R Hütter, and J Nüesch (eds.). New York: Academic Press, pp. 181–186.

    Google Scholar 

  • del Castillo T, Ramos JL (2007) Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channelled through different signalling pathways. J Bacteriol 189: 6602–6610.

    Article  PubMed  CAS  Google Scholar 

  • Delgado A, Ramos JL (1994) Genetic evidence for activation of the positive transcriptional regulator XylR, a member of the NtrC family of regulators, by effector binding. J Biol Chem 269: 8059–8062.

    PubMed  CAS  Google Scholar 

  • Domínguez-Cuevas P, Marqués S (2004) Compiling sigma-70 dependent promoters. In Pseudomonas, JL Ramos (ed.). vol. 2, Chap. 11. Dordrecht, The Netherlands: Kluwer, pp. 319–345.

    Google Scholar 

  • Finette BA, Subramanian V, Gibson DT (1984) Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. J Bacteriol 160: 1003–1009.

    PubMed  CAS  Google Scholar 

  • Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188: 4169–4182.

    Article  PubMed  CAS  Google Scholar 

  • Inoue A, Horikoshi K (1989) A Pseudomonas that thrives in high concentration of toluene. Nature (London) 338: 264–266.

    Article  CAS  Google Scholar 

  • Jurado P, Fernández LA, de Lorenzo V (2003) Sigma 54 levels and physiological control of the Pseudomonas putida Pu promoter. J Bacteriol 185: 3379–3383.

    Article  PubMed  CAS  Google Scholar 

  • Lacal J, Busch A, Guazzaroni ME, Krell T, Ramos JL (2006) The TodS–TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proc Natl Acad Sci USA 103: 8191–8196.

    Article  PubMed  CAS  Google Scholar 

  • Lacal J, Guazzaroni ME, Busch A, Krell T, Ramos JL (2008) Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter. J Mol Biol 376: 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Lau PCK, Wang Y, Patel A, Labbé D, Bergeron H, Brousseau R, Konishi Y, Rawlings M (1997) A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci USA 94: 1453–1458.

    Article  PubMed  CAS  Google Scholar 

  • Leoni L, Ascenzi P, Bocedi A, Rampioni G, Castellini, L, Zennaro E (2003) Styrene-catabolism regulation in Pseudomonas fluorescens ST: phosphorylation of StyR induces dimerization and cooperative DNA-binding. Biochem Biophys Res Commun 303: 926–931.

    Article  PubMed  CAS  Google Scholar 

  • Mitrophanov AY, Groisman EA (2008) Signal integration in bacterial two-component regulatory systems. Genes Dev 22(19): 2601–2611.

    Article  PubMed  CAS  Google Scholar 

  • Mosqueda G, Ramos-González MI, Ramos JL (1999) Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232: 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Piñar G, Kovárová K, Egli T, Ramos JL (1998) Influence of carbon source of nitrate removal by nitrate-tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat cultures. Appl Environ Microbiol 64: 2970–2976.

    PubMed  Google Scholar 

  • Ramos JL, Duque E, Huertas MJ, Haïdour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177: 3911–3916.

    PubMed  CAS  Google Scholar 

  • Ramos JL, Marqués S, Timmis KN (1997) Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Ann Rev Microbiol 51: 341–373.

    Article  CAS  Google Scholar 

  • Ramos JL, Mermod N, Timmis KN (1987b) Regulatory circuits controlling transcription of TOL plasmid operon encoding meta-cleavage pathway for degradation of alkylbenzoates by Pseudomonas. Mol Microbiol 1: 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Ramos JL, Stolz A, Reineke W, Timmis KN (1986) Altered effector specificities in regulators of gene expression. TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc Natl Acad Sci USA 83: 8467–8471.

    Article  PubMed  CAS  Google Scholar 

  • Ramos JL, Wasserfallen A, Rose K, Timmis KN (1987a) Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235: 593–596.

    Article  PubMed  CAS  Google Scholar 

  • Ramos-González MI, Olson M, Gatenby AA, Mosqueda G, Manzanera M, Campos MJ, Víchez S, Ramos JL (2002) Cross-regulation between a novel two-component signal transduction system for catabolism of toluene in Pseudomonas mendocina and the TodST system from Pseudomonas putida. J Bacteriol 184: 7062–7067.

    Article  PubMed  Google Scholar 

  • Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1: 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich LE, Koonin EV, Zhulin B (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13: 52–56.

    Article  PubMed  CAS  Google Scholar 

  • Velasco A, Alonso S, García JL, Perera J, Díaz E (1998) Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 180: 1063–1071.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Daniels, C. et al. (2010). Genetics of Accessing and Exploiting Hydrocarbons. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_109

Download citation

Publish with us

Policies and ethics

Navigation