Organic Matter BOD Biosensor Monitoring

  • Living reference work entry
  • First Online:
Handbook of Cell Biosensors

Abstract

From a proposal of a microbial Biochemical Oxygen Demand (BOD) biosensor by Karube et al. in 1977, components (recognition elements, transducer, etc.) have so far been developed from various perspectives such as microbiology and material engineering. As a result, recent progresses in biosensors have resulted in high sensitivity, compact body, and a wide spectrum of targets. Furthermore, self-powered microbial BOD biosensors are currently developed as independent devices even when electric power is not supplied. In this section, recent progress and development in microbial BOD biosensors are summarized based on actual reports on microbial BOD biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alferov VA, Filatova NM, Asulyan LD et al (2011) Formation of the stable receptor element of a biosensor by immobilization of Gluconobacter oxydans bacterial cells in a film of poly(vinyl alcohol) modified by N-vinylpyrrolidone. Izv TulGU Nat Sci 1:210–219

    Google Scholar 

  • APHA (1985) Standard methods for examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Arlyapov VA, Yudina NY, Asulyan LD et al (2013) BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly(vinyl alcohol) modified by N-vinylpyrrolidone. Enzyme Microb Technol 53:257–262

    CAS  PubMed  Google Scholar 

  • Behera M, Jana PS, Ghangrekar MM (2010) Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresour Technol 101:1183–1189

    CAS  PubMed  Google Scholar 

  • Chan C, Lehmann M, Tag K et al (1999) Measurement of biodegradable substances using the salt-tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate (PCS) part I: construction and characterization of the microbial sensor. Biosens Bioelectron 14:131–138

    CAS  PubMed  Google Scholar 

  • Chang IS, Jang JK, Gil GC et al (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613

    CAS  PubMed  Google Scholar 

  • Chang IS, Moon H, Jang JK et al (2005) Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron 20:1856–1859

    CAS  PubMed  Google Scholar 

  • Chee GJ, Nomura Y, Karube I (1999) Biosensor for the estimation of low biochemical oxygen demand. Anal Chim Acta 379:185–191

    CAS  Google Scholar 

  • Chee GJ, Nomura Y, Ikebukuro K et al (2001) Biosensor for the evaluation of biochemical oxygen demand using photocatalytic pretreatment. Sens Actuators B 80:15–20

    CAS  Google Scholar 

  • Chee GJ, Nomura Y, Ikebukuro K et al (2007) Stopped-flow system with ozonizer for the estimation of low biochemical oxygen demand in environmental samples. Biosens Bioelectron 22: 3092–3098

    CAS  PubMed  Google Scholar 

  • Cheng L, Quek SB, Cord-Ruwisch R (2014) Hexacyanoferrate-adapted biofilm enables the development of a microbial fuel cell biosensor to detect trace levels of assimilable organic carbon (AOC) in oxygenated seawater. Biotechnol Bioeng 111:2412–2420

    CAS  PubMed  Google Scholar 

  • Cheng L, Yuan M, Gu L et al (2015) Wireless, power-free and implantable nanosystem for resistance-based biodetection. Nano Energy 15:598–606

    CAS  Google Scholar 

  • Chouler J, Di Lorenzo M (2015) Water quality monitoring in develo** countries; can microbial fuel cells be the answer? Biosensors 5:450–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Mangwani N (2010) Recent developments in microbial fuel cells: a review. J Sci Ind Res 69:727–731

    CAS  Google Scholar 

  • Dávila D, Esquivel JP, Sabaté N et al (2011) Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron 26:2426–2430

    PubMed  Google Scholar 

  • Dhall P, Kumar R, Kumar A (2012) BOD beads – a ready to use seeding material for estimation of organic load of wastewater. Anal Methods 4:4101–4106

    CAS  Google Scholar 

  • Di Lorenzo M, Curtis TP, Head IM et al (2009a) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43:3145–3154

    PubMed  Google Scholar 

  • Di Lorenzo M, Scott K, Curtis TP et al (2009b) Continuous feed microbial fuel cell using an air cathode and a disc anode stack for wastewater treatment. Energy Fuels 23:5707–5716

    Google Scholar 

  • Di Lorenzo M, Thomson AR, Schneider K et al (2014) A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens Bioelectron 62:182–188

    PubMed  Google Scholar 

  • Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    CAS  PubMed  Google Scholar 

  • Elkahlout K, Alipour S, Eroglu I et al (2017) Long-term biological hydrogen production by agar immobilized Rhodobacter capsulatus, in a sequential batch photobioreactor. Bioprocess Biosyst Eng 40:589–599

    CAS  PubMed  Google Scholar 

  • Environmental standard of the European Union (2008) Data sheets for surface water quality standards. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM%3Al28180. Accessed 15 May 2018

  • Fein JB, Daughney CJ, Yee N et al (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328

    CAS  Google Scholar 

  • Feng Y, Barr W, Harper WF (2013) Neural network processing of microbial fuel cell signals for the identification of chemicals present in water. J Environ Manag 120:84–92

    CAS  Google Scholar 

  • Fijałkowski K, Peitler D, Rakoczy R et al (2015) Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. LWT Food Sci Technol 68:322–328

    Google Scholar 

  • Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899–919

    CAS  Google Scholar 

  • Gil GC, Chang IS, Kim BH et al (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–324

    CAS  PubMed  Google Scholar 

  • Gosset A, Ferro Y, Durrieu C (2016) Methods for evaluating the pollution impact of urban wet weather discharges on biocenosis: a review. Water Res 89:330–354

    CAS  PubMed  Google Scholar 

  • Hikuma M, Suzuki H, Yasuda T et al (1979) Amperometric estimation of BOD by using living immobilized yeast. Eur J Appl Microbiol Biotechnol 8:289–297

    CAS  Google Scholar 

  • Hu J, Li Y, Gao G et al (2017) A mediated BOD biosensor based on immobilized B. subtilis on three-dimensional porous graphene-polypyrrole composite. Sensors 17. pii: E2594

    Google Scholar 

  • Huang X, Jiao LM, Liao XP et al (2008) Adsorptive removal of As(III) from aqueous solution by Zr(IV)-loaded collagen fiber. Ind Eng Chem Res 47:5623–5628

    CAS  Google Scholar 

  • Hyun CK, Tamiya E, Takeuchi T et al (1993) Novel BOD sensor based on bacterial luminescence. Biotechnol Bioeng 41:1107–1111

    CAS  PubMed  Google Scholar 

  • Ieropoulos I, Stinchcombe A, Gajda I et al (2015) Pee power urinal – microbial fuel cell technology field trials in the context of sanitation. Environ Sci Water Res Technol 2:336–343

    Google Scholar 

  • Jiang X, Lin X (2005) Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Anal Chim Acta 537:145–151

    CAS  Google Scholar 

  • Jiang Y, **ao LL, Zhao L et al (2006) Optical biosensor for the determination of BOD in seawater. Talanta 70:97–103

    CAS  PubMed  Google Scholar 

  • Jordan MA, Welsh DT, Teasdale PR et al (2010) A ferricyanide-mediated activated sludge bioassay for fast determination of the biochemical oxygen demand of wastewaters. Water Res 44:5981–5988

    CAS  PubMed  Google Scholar 

  • Jordan MA, Welsh DT, John R et al (2013) A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents. Water Res 47:841–849

    CAS  PubMed  Google Scholar 

  • Jouanneau S, Recoules L, Durand MJ et al (2014) Methods for assessing biochemical oxygen demand (BOD): a review. Water Res 49:62–82

    CAS  PubMed  Google Scholar 

  • Kaláb T, SkládalKalab P (1994) Evaluation of mediators for development of amperometric microbial bioelectrodes. Electroanalysis 6:1004–1008

    Google Scholar 

  • Karube I, Matsunaga T, Mitsuda S et al (1977) Microbial electrode BOD sensors. Biotechnol Bioeng 19:1535–1547

    CAS  PubMed  Google Scholar 

  • Kim MN, Kwon HS (1999) Biochemical oxygen demand sensor using Serratia marcescens LSY 4. Biosens Bioelectron 14:1–7

    PubMed  Google Scholar 

  • Kim BH, Kim HJ, Hyun MS et al (1999a) Direct electrode reaction of Fe(III) reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131

    Google Scholar 

  • Kim H, Hyun M, Chang I et al (1999b) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:365–367

    CAS  Google Scholar 

  • Kim HJ, Park HS, Hyun MS et al (2002) A mediator-less microbial fuel cell using a metal reducing bacteirium, Shewanella putrefaciens. Enzyme Microb Technol 30:145–152

    CAS  Google Scholar 

  • Kim BH, Chang IS, Gil GC et al (2003a) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545

    CAS  PubMed  Google Scholar 

  • Kim M, Youn SM, Shin SH et al (2003b) Practical field application of a novel BOD monitoring system. J Environ Monit 5:640–643

    CAS  PubMed  Google Scholar 

  • Kim BH, Chang IS, Gadd GM (2007a) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76:485–494

    CAS  PubMed  Google Scholar 

  • Kim M, Hyun MS, Gaddb GM et al (2007b) A novel biomonitoring system using microbial fuel cells. J Environ Monit 9:1323–1328

    CAS  PubMed  Google Scholar 

  • Kumlanghan A, Kanatharana P, Asawatreratanakul P et al (2008) Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry. Enzyme Microb Technol 42:483–491

    CAS  Google Scholar 

  • Kwong AWK, Chan CY, Renneberg R (1998) Monitoring biodegradable substances with high-molecular content with a microbial sensor. Anal Lett 31:2309–2325

    CAS  Google Scholar 

  • Le DQ, Takai M, Suekuni S (2015) Development of an observation platform for bacterial activity using polypyrrole films doped with bacteria. Anal Chem 87:4047–4052

    CAS  PubMed  Google Scholar 

  • Lee SH, Jeong CK, Hwang GT et al (2014) Self-powered flexible inorganic electronic system. Nano Energy 14:111–125

    Google Scholar 

  • Li Z, Rosenbaum M, Venkataraman A et al (2011) Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chem Commun 47:3060–3062

    CAS  Google Scholar 

  • Li J, Yang R, Chen K et al (2013) Mediated microbial biosensor using Bacillus subtilis for wastewater BOD measurement. Biochem Eng J 8:219–225

    CAS  Google Scholar 

  • Liang Q, Yamashita T, Yamamoto-Ikemoto R et al (2018) Flame-oxidized stainless-steel anode as a probe in bioelectrochemical system-based biosensors to monitor the biochemical oxygen demand of wastewater. Sensors 18. pii: E607

    Google Scholar 

  • Liao XP, Lu Z, Du X et al (2004) Collagen fiber immobilized Myrica rubra tannin and its adsorption to UO22+. Environ Sci Technol 38:324–328

    CAS  PubMed  Google Scholar 

  • Liu J, Björnsson L, Mattiasson B (2000) Immobilised activated sludge based biosensor for biochemical oxygen demand measurement. Biosens Bioelectron 14:883–893

    CAS  PubMed  Google Scholar 

  • Liu J, Wang Z, Zhao Y et al (2012) Three-dimensional graphene-polypyrrole hybrid electrochemical actuator. Nanoscale 4:7563–7568

    CAS  PubMed  Google Scholar 

  • Liu B, Lei Y, Li B (2014) A batch-mode cube microbial fuel cell based “shock” biosensor for wastewater quality monitoring. Biosens Bioelectron 62:308–314

    CAS  PubMed  Google Scholar 

  • Liu C, Li Z, Jiang D et al (2016) Demonstration study of biofilm reactor based rapid biochemical oxygen demand determination of surface water. Sens Bio-Sens Res 8:8–13

    CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Microbial fuel cells: challenges and applications. Environ Sci Technol 40:5172–5180

    CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    CAS  PubMed  Google Scholar 

  • Marks RS, Cullen DC, Karube I et al (eds) (2007) Handbook of biosensors and biochips. Hoboken. 356

    Google Scholar 

  • Melhuish C, Ieropoulos I, Greenman J et al (2006) Energetically autonomous robots: food for thought. Auton Robots 21:187–198

    Google Scholar 

  • Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814

    CAS  PubMed  Google Scholar 

  • Miyake T, Haneda K, Nagai N et al (2011) Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ Sci 4:5008–5012

    CAS  Google Scholar 

  • Moon H, Chang IS, Kang KH et al (2004) Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol Lett 26: 1717–1721

    CAS  PubMed  Google Scholar 

  • Murakami Y, Kikuchi T, Yamaura A et al (1998) An organic pollution sensor based on surface photovoltage. Sens Actuators B 53:163–172

    CAS  Google Scholar 

  • Nakamura H, Suzuki K, Ishikuro H et al (2007) A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta 72:210–216

    CAS  PubMed  Google Scholar 

  • National standard of the People’s Republic of China, environmental quality standards for surface water (2014.) http://english.gov.cn/archive/laws_regulations/2014/08/23/content_281474983042375.htm. Accessed 15 May 2018

  • Oturan MA (2014) Electrochemical advanced oxidation technologies for removal of organic pollutants from water. Environ Sci Pollut Res 21:8333–8335

    CAS  Google Scholar 

  • Pant D, Bogaert GV, Diels L et al (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    CAS  PubMed  Google Scholar 

  • Pasco N, Baronian K, Jeffries C et al (2000) Biochemical mediator demand-a novel rapid alternative for measuring biochemical oxygen demand. Appl Microbiol Biotechnol 53:613–618

    CAS  PubMed  Google Scholar 

  • Pasternak G, Greenman J, Ieropoulos I (2016) Comprehensive study on ceramic membranes for low-cost microbial fuel cells. ChemSusChem 9:88–96

    CAS  PubMed  Google Scholar 

  • Pasternak G, Greenmana J, Ieropoulos I (2017) Self-powered, autonomous Biological Oxygen Demand biosensor foronline water quality monitoring. Sens Actuators B Chem 244:815–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil S, Harnisch F, Schröder U (2010) Toxicity response of electroactive microbial biofilms – a decisive feature for potential biosensor and power source applications. ChemPhysChem 11:2834–2837

    CAS  PubMed  Google Scholar 

  • Ponomareva ON, Arlyapov VA, Alferov VA (2011) Microbial biosensors for detection of biological oxygen demand (a review). Appl Biochem Microbiol 47:1–11

    CAS  Google Scholar 

  • Qiu H, Guan Y, Luo P et al (2017) Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosens Bioelectron 89:85–95

    CAS  PubMed  Google Scholar 

  • Ramsay G, Turner APF (1988) Development of an electrochemical method for the rapid determination of microbial concentration and evidence for the reaction mechanism. Anal Chim Acta 215:61–69

    CAS  Google Scholar 

  • Rasmussen M, Abdellaoui S, Minteer SD (2016) Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 76:91–102

    CAS  PubMed  Google Scholar 

  • Raud M, Tutt M, Jõgi E et al (2011) BOD biosensors for pulp and paper industry wastewater analysis. Environ Sci Pollut Res Int 19:3039–3045

    PubMed  Google Scholar 

  • Raud M, Toomas T, Eerik J et al (2012) Comparative study of semi-specific Aeromonas hydrophila and universal Pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters. Enzyme Microb Technol 50:221–226

    CAS  PubMed  Google Scholar 

  • Reiss M, Heibges A, Metzger J et al (1998) Determination of BOD-values of starch-containing waste water by a BOD biosensor. Biosens Bioelectron 13:1083–1090

    CAS  PubMed  Google Scholar 

  • Reynolds DM, Ahmad SR (1997) Rapid and direct determination of wastewater BOD values using a fluorescence technique. Water Res 31:2012–2018

    CAS  Google Scholar 

  • Riedel K, Renneberg R, Kühn M et al (1988) A fast estimation of biochemical oxygen demand using microbial sensors. Appl Microbiol Biotechnol 28:316–318

    CAS  Google Scholar 

  • Riedel K, Lehmann M, Tag K et al (1998) Arxula adeninivorans based sensor for the estimation of BOD. Anal Lett 31:1–12

    CAS  Google Scholar 

  • Rubenwolf S, Kerzenmacher S, Zengerle R et al (2011) Strategies to extend the lifetime of bioelectrochemical enzyme electrodes for biosensing and biofuel cell applications. Appl Microbiol Biotechnol 89:1315–1322

    CAS  PubMed  Google Scholar 

  • Sangeetha S, Sugandhi G, Murugesan M et al (1996) Torulopsis candida based sensor for the estimation of biochemical oxygen demand and its evaluation. Electroanalysis 8:698–701

    CAS  Google Scholar 

  • Sergio AMD, Bustos TY (2009) Biodegradation of wastewater pollutants by activated sludge encapsulated inside calcium-alginate beads in a tubular packed bed reactor. Biodegradation 20:709–712

    CAS  PubMed  Google Scholar 

  • Shen Y, Wang M, Chang IS et al (2013) Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresour Technol 136:707–710

    CAS  PubMed  Google Scholar 

  • Stein NE, Hamelers HVM, Buisman CNJ (2010) Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions. Bioelectrochemistry 78:87–91

    CAS  PubMed  Google Scholar 

  • Stein NE, Hamelers HV, Buisman CN (2012a) Influence of membrane type, current and potential on the response to chemical toxicants of a microbial fuel cell based biosensor. Sens Actuators B Chem 163:1–7

    CAS  Google Scholar 

  • Stein NE, Hamelers HV, Buisman CN (2012b) The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell based biosensor. Sens Actuators B Chem 171–172:816–821

    Google Scholar 

  • Stein NE, Hamelers HVM, van Straten G et al (2012c) Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition. Biosensors 2:255–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Jia W, Hou C et al (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    CAS  PubMed  Google Scholar 

  • Sun JZ, Kingori GP, Si RW et al (2015) Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol 71:801–809

    CAS  PubMed  Google Scholar 

  • Suriyawattanakul L, Surareungchai W, Sritongkam P et al (2002) The use of co-immobilization of Trichosporon cutaneum and Bacillus licheniformis for a BOD sensor. Appl Microbiol Biotechnol 59:40–44

    CAS  PubMed  Google Scholar 

  • Tag K, Kwong AWK, Lehmann M et al (2000) Fast detection of high molecular weight substances in wastewater based on an enzymatic hydrolysis combined with the Arxula BOD sensor system. Chem Technol Biotechnol 75:1080–1082

    CAS  Google Scholar 

  • Thévenot DR, Toth K, Durst RA et al (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    PubMed  Google Scholar 

  • Thompson G, Swain J, Kay M et al (2001) The treatment of pulp and paper mill effluent: a review. Bioresour Technol 77:275–286

    CAS  PubMed  Google Scholar 

  • Tront JM, Fortner JD, Plötze M et al (2008) Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24:586–590

    CAS  PubMed  Google Scholar 

  • Wang J, Zhang Y, Wang Y et al (2010) An innovative reactor-type biosensor for BOD rapid measurement. Biosens Bioelectron 25:1705–1709

    CAS  PubMed  Google Scholar 

  • Wang B, Yan S, Shi Y (2015) Direct electrochemical analysis of glucose oxidase on a graphene aerogel/gold nanoparticle hybrid for glucose biosensing. J Solid State Electrochem 19:307–314

    CAS  Google Scholar 

  • Yang Z, Suzuki H, Sasaki S et al (1997) Comparison of the dynamic transient- and steady-state measuring methods in a batch type BOD sensing system. Sensors Actuators 45:217–222

    CAS  Google Scholar 

  • Yoshida N, Yano K, Morita T et al (2000) A mediator-type biosensor as a new approach to biochemical oxygen demand estimation. Analyst 125:2280–2284

    CAS  PubMed  Google Scholar 

  • Zaitseva AS, Arlyapov VA, Yudina NY et al (2017) Use of one- and two-mediator systems for develo** a BOD biosensor based on the yeast Debaryomyces hansenii. Enzyme Microb Technol 98:43–51

    CAS  PubMed  Google Scholar 

  • Zanon E, Mancini A, Pavanello IG et al (2013) A review on thermal exfoliation of graphene oxide. J Mater Res 95:5343–5350

    Google Scholar 

  • Zhang Y, Angelidaki I (2011) Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability. Biotechnol Bioeng 108:2339–2347

    CAS  PubMed  Google Scholar 

  • Zhao L, He L, Chen S et al (2017) Microbial BOD sensors based on Zr (IV)-loaded collagen fiber. Enzyme Microb Technol 98:52–57

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Karube .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nakanishi, A., Yoshida, W., Karube, I. (2019). Organic Matter BOD Biosensor Monitoring. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_95-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_95-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation