Biosensors and Bioelectronics on Smartphone

  • Living reference work entry
  • First Online:
Handbook of Cell Biosensors

Abstract

Biosensors and bioelectronics have been develo** rapidly, playing an increasingly important role in the fields of medicine, food, environment, and public safety. It is of utmost importance to develop fast, real-time, accurate, and portable biosensors and detection systems. Smartphone, owing to the advantages of high processing speed, high-definition image analysis, and excellent human–computer interaction interface, has been widely integrated with sensors, such as sensor chips and handheld detectors for biochemical detections. In general, the smartphone-based detection system used the built-in function modules as controller, analyzer, and displayer, which significantly simplified the design and reduced the cost of the system. This chapter presents smartphone-based biosensing with bioelectronics in electrochemistry, spectroscopy, and near-field communication. Detector attachments, sensor strategies, and communication modes were introduced in detail to provide clear designs of smartphone-based systems. In electrochemistry systems, amperometry sensing, potentiometry sensing, and impedimetry sensing were introduced with specific technical circuit implementation and biochemical applications. In spectroscopy systems, we reviewed the optical sensing on smartphone, firstly. Then electrochemical-localized surface plasmon resonance and electrochemiluminescence sensing were comprehensively discussed on smartphone. Finally, near-field communication technique on smartphone was applied for wearable and implanted biosensing on flexible devices. Along with their applications in point-of-care testing, it can be concluded that biosensors and bioelectronics based on smartphone would be the promising develo** directions in biochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abgrall P, Gue A (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem – a review. J Micromech Microeng 17:R15–R49

    Article  Google Scholar 

  • Anabtawi N, Freeman S, Ferzli R (2016) A fully implantable, NFC enabled, continuous interstitial glucose monitor. In: Biomedical and Health Informatics (BHI), 2016 IEEE-EMBS International Conference on, IEEE 2016, pp 612–615

    Google Scholar 

  • Aronoff-Spencer E, Venkatesh A, Sun A et al (2016) Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens Bioelectron 86:690–696

    Article  CAS  PubMed  Google Scholar 

  • Aymerich J, Márquez A, Terés L et al (2018) Cost-effective smartphone-based reconfigurable electrochemical instrument for alcohol determination in whole blood samples. Biosens Bioelectron 117:736–742

    Article  CAS  PubMed  Google Scholar 

  • Azzarelli JM, Mirica KA, Ravnsbæk JB et al (2014) Wireless gas detection with a smartphone via rf communication. Proc Natl Acad Sci 111:18162–18166

    Article  CAS  PubMed  Google Scholar 

  • Bai Y-W, Lin C-H (2014) A portable oxygen concentration detection and monitor system using a smartphone and a portable sensor module. In: Consumer Electronics-Taiwan (ICCE-TW), 2014 IEEE International Conference on, IEEE 2014, pp 129–130

    Google Scholar 

  • Balakrishnan SR, Hashim U, Letchumanan G et al (2014) Development of highly sensitive polysilicon nanogap with APTES/GOx based lab-on-chip biosensor to determine low levels of salivary glucose. Sensors Actuators A Phys 220:101–111

    Article  CAS  Google Scholar 

  • Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32:363–371

    Article  CAS  PubMed  Google Scholar 

  • Bandodkar AJ, Jeerapan I, Wang J (2016) Wearable chemical sensors: present challenges and future prospects. ACS Sens 1:464–482

    Article  CAS  Google Scholar 

  • Barbosa AI, Gehlot P, Sidapra K et al (2015) Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron 70:5–14

    Article  CAS  PubMed  Google Scholar 

  • Biran I, Babai R, Levcov K et al (2000) Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ Microbiol 2:285–290

    Article  CAS  PubMed  Google Scholar 

  • Bisetty K (2018) Smartphone based bioanalytical and diagnosis applications: a review. Biosens Bioelectron 102:136–149

    Article  PubMed  CAS  Google Scholar 

  • Blackburn GF, Shah HP, Kenten JH et al (1991) Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clin Chem 37:1534–1539

    Article  CAS  PubMed  Google Scholar 

  • Brandt O, Hoheisel JD (2004) Peptide nucleic acids on microarrays and other biosensors. Trends Biotechnol 22:617–622

    Article  CAS  PubMed  Google Scholar 

  • Breslauer DN, Maamari RN, Switz NA et al (2009) Mobile phone based clinical microscopy for global health applications. PLoS One 4:e6320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang B-Y, Park S-M (2010) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3:207–229

    Article  CAS  Google Scholar 

  • Chen L, Zhang C, **ng D (2016) Based bipolar electrode-electrochemiluminescence (BPE-ECL) device with battery energy supply and smartphone read-out: a handheld ECL system for biochemical analysis at the point-of-care level. Sensors Actuators B Chem 237:308–317

    Article  CAS  Google Scholar 

  • Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8:95–103

    Article  CAS  Google Scholar 

  • Conroy PJ, Hearty S, Leonard P et al (2009) Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 20:10–26

    Article  CAS  PubMed  Google Scholar 

  • Coskun V, Ozdenizci B, Ok K (2013) A survey on near field communication (NFC) technology. Wirel Pers Commun 71:2259–2294

    Article  Google Scholar 

  • Delaney JL, Doeven EH, Harsant AJ et al (2013a) Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta 790:56–60

    Article  CAS  PubMed  Google Scholar 

  • Delaney JL, Doeven EH, Harsant AJ et al (2013b) Reprint of: use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta 803:123–127

    Article  CAS  PubMed  Google Scholar 

  • Di Martino G, Turek VA, Lombardi A et al (2017) Tracking nanoelectrochemistry using individual plasmonic nanocavities. Nano Lett 17:4840–4845

    Article  PubMed  CAS  Google Scholar 

  • Doeven EH, Barbante GJ, Harsant AJ et al (2015) Mobile phone-based electrochemiluminescence sensing exploiting the ‘USB On-The-Go’ protocol. Sensors Actuators B Chem 216:608–613

    Article  CAS  Google Scholar 

  • Dutta S, Saikia K, Nath P (2016) Smartphone based LSPR sensing platform for bio-conjugation detection and quantification. RSC Adv 6:21871–21880

    Article  CAS  Google Scholar 

  • Escobedo P, Erenas M, Lopez-Ruiz N et al (2017) Flexible passive near field communication tag for multigas sensing. Anal Chem 89:1697–1703

    Article  CAS  PubMed  Google Scholar 

  • Fan X, White IM, Shopova SI et al (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Zhao G, Shi H et al (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Liu J, Wang Y et al (2017) A wireless point-of-care testing system for the detection of neuron-specific enolase with microfluidic paper-based analytical devices. Biosens Bioelectron 95:60–66

    Article  CAS  PubMed  Google Scholar 

  • Forster RJ, Bertoncello P, Keyes TE (2009) Electrogenerated chemiluminescence. Annu Rev Anal Chem 2:359–385

    Article  CAS  Google Scholar 

  • Gao W, Nyein HY, Shahpar Z et al (2016a) Wearable sweat biosensors. In: Electron Devices Meeting (IEDM), 2016 IEEE International, IEEE 2016, pp 6.6.1–6.6.4

    Google Scholar 

  • Gao W, Emaminejad S, Nyein HYY et al (2016b) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Saqib M, Qi L et al (2017) Recent advances in electrochemiluminescence devices for point-of-care testing. Curr Opin Electrochem 3:4–10

    Article  CAS  Google Scholar 

  • Geng Z, Zhang X, Fan Z et al (2017) Recent progress in optical biosensors based on smartphone platforms. Sensors 17:2449

    Article  Google Scholar 

  • Goode J, Rushworth J, Millner P (2014) Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31:6267–6276

    Article  PubMed  CAS  Google Scholar 

  • Gorton L, Lindgren A, Larsson T et al (1999) Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal Chim Acta 400:91–108

    Article  CAS  Google Scholar 

  • Guo J (2016) Uric acid monitoring with a smartphone as the electrochemical analyzer. Anal Chem 88:11986–11989

    Article  CAS  PubMed  Google Scholar 

  • Guo J (2017) Smartphone-powered electrochemical dongle for point-of-care monitoring of blood β-ketone. Anal Chem 89:8609–8613

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Xu D, Chen J et al (2018) Smartphone-based analytical biosensors. Analyst 143:5339–5351

    Article  CAS  PubMed  Google Scholar 

  • IHS T (2014) NFC-enabled cellphone shipments to soar fourfold in next five years. Antenna Systs & Technol 17:27

    Google Scholar 

  • Ji D, Liu L, Li S et al (2017) Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens Bioelectron 98:449–456

    Article  CAS  PubMed  Google Scholar 

  • Ji D, Liu Z, Liu L et al (2018a) Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens Bioelectron 119:55–62

    Article  CAS  PubMed  Google Scholar 

  • Ji D, Xu N, Liu Z et al (2018b) Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. Biosens Bioelectron 129:216–223

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Wang X, Chao R et al (2014) Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sensors Actuators B Chem 193:653–659

    Article  CAS  Google Scholar 

  • Joseph S, Rusling JF, Lvov YM et al (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochem Pharmacol 65:1817–1826

    Article  CAS  PubMed  Google Scholar 

  • Jung Y, Park H, Park J-A et al (2015) Fully printed flexible and disposable wireless cyclic voltammetry tag. Sci Rep 5:8105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchi S, Sabela MI, Mdluli PS et al (2017) Smartphone based bioanalytical and diagnosis applications: a review. Biosens Bioelectron 102:136–149

    Article  PubMed  CAS  Google Scholar 

  • Kang S-K, Murphy RK, Hwang S-W et al (2016) Bioresorbable silicon electronic sensors for the brain. Nature 530:71

    Article  CAS  PubMed  Google Scholar 

  • Kassal P, Kim J, Kumar R et al (2015) Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochem Commun 56:6–10

    Article  CAS  Google Scholar 

  • Kato F, Minamimoto H, Nagasawa F et al (2018) Active tuning of strong coupling states between dye Excitons and localized surface plasmons via electrochemical potential control. ACS Photon 5:788

    Article  CAS  Google Scholar 

  • Kawawaki T, Zhang H, Nishi H et al (2017) Potential-scanning localized plasmon sensing with single and coupled gold Nanorods. J Phys Chem Lett 8:3637–3641

    Article  CAS  PubMed  Google Scholar 

  • Kerman K, Kobayashi M, Tamiya E (2003) Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 15:R1–R11

    Article  CAS  Google Scholar 

  • Kim J, Banks A, **e Z et al (2015) Miniaturized flexible electronic systems with wireless power and near-field communication capabilities. Adv Funct Mater 25:4761–4767

    Article  CAS  Google Scholar 

  • Kim J, Jeerapan I, Imani S et al (2016a) Noninvasive alcohol monitoring using a wearable tattoo-based Iontophoretic-biosensing system. ACS Sens 1:1011–1019

    Article  CAS  Google Scholar 

  • Kim J, Salvatore GA, Araki H et al (2016b) Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci Adv 2:10

    Google Scholar 

  • Koh A, Kang D, Xue Y et al (2016) A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med 8:366ra165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lebiga E, Fernandez RE, Beskok A (2015) Confined chemiluminescence detection of nanomolar levels of H2O2 in a paper–plastic disposable microfluidic device using a smartphone. Analyst 140:5006–5011

    Article  CAS  PubMed  Google Scholar 

  • Leikanger T, Häkkinen J, Schuss C (2017) Interfacing external sensors with Android smartphones through near field communication. Meas Sci Technol 28:044006

    Article  CAS  Google Scholar 

  • Li X, Shen L, Zhang D et al (2008) Electrochemical impedance spectroscopy for study of aptamer–thrombin interfacial interactions. Biosens Bioelectron 23:1624–1630

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang D, Zhang Q et al (2016a) Electrophoresis-enhanced localized surface plasmon resonance sensing based on nanocup array for thrombin detection. Sensors Actuators B Chem 232:219–225

    Article  CAS  Google Scholar 

  • Li N, Zhang D, Zhang Q et al (2016b) Combining localized surface plasmon resonance with anodic strip** voltammetry for heavy metal ion detection. Sensors Actuators B Chem 231:349–356

    Article  CAS  Google Scholar 

  • Li N, Lu Y, Li S et al (2017) Monitoring the electrochemical responses of neurotransmitters through localized surface plasmon resonance using nanohole array. Biosens Bioelectron 93:241–249

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liu J, Lu Y et al (2018a) Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection. Biosens Bioelectron 117:32–39

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang D, Liu J et al (2018b) Electrochemiluminescence on smartphone with silica nanopores membrane modified electrodes for nitroaromatic explosives detection. Biosens Bioelectron 129:284–291

    Article  PubMed  CAS  Google Scholar 

  • Li S, Zhang Q, Lu Y et al (2018c) Gold nanoparticles on graphene oxide substrate as sensitive nanoprobes for rapid L-cysteine detection through smartphone-based multimode analysis. ChemistrySelect 3:10002–10009

    Article  CAS  Google Scholar 

  • Lillehoj PB, Huang M-C, Truong N et al (2013) Rapid electrochemical detection on a mobile phone. Lab Chip 13:2950–2955

    Article  CAS  PubMed  Google Scholar 

  • Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555–1567

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhang D, Zhang Q et al (2017) Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection. Biosens Bioelectron 93:94–101

    Article  CAS  PubMed  Google Scholar 

  • Llorente VB, Dzhagan VM, Gaponik N et al (2017) Electrochemical tuning of localized surface plasmon resonance in copper Chalcogenide Nanocrystals. J Phys Chem C 121:18244–18253

    Article  CAS  Google Scholar 

  • Ma L, Xu S, Wang C et al (2017) Electrically modulated localized surface plasmon around self-assembled-monolayer-covered nanoparticles. Langmuir 33:1437–1441

    Article  CAS  PubMed  Google Scholar 

  • Macdonald JR, Barsoukov E (2005) Impedance spectroscopy: theory, experiment, and applications. History 1:1–13

    Google Scholar 

  • McCracken KE, Yoon J-Y (2016) Recent approaches for optical smartphone sensing in resource-limited settings: a brief review. Anal Methods 8:6591–6601

    Article  Google Scholar 

  • Morak J, Kumpusch H, Hayn D et al (2012) Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices. IEEE Trans Inf Technol Biomed 16:17–23

    Article  PubMed  Google Scholar 

  • Moreira CM, Pereira SV, Raba J et al (2018) Based enzymatic platform coupled to screen printed graphene-modified electrode for the fast neonatal screening of phenylketonuria. Clin Chim Acta 486:59–65

    Article  CAS  PubMed  Google Scholar 

  • Muzyka K (2014) Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron 54:393–407

    Article  CAS  PubMed  Google Scholar 

  • Nemiroski A, Christodouleas DC, Hennek JW et al (2014) Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad Sci 111:11984–11989

    Article  CAS  PubMed  Google Scholar 

  • Nyein HYY, Gao W, Shahpar Z et al (2016) A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10:7216–7224

    Article  CAS  PubMed  Google Scholar 

  • Parrilla M, Cánovas R, Jeerapan I et al (2016) A textile-based stretchable multi-ion potentiometric sensor. Adv Healthc Mater 5:996–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesada-González D, Merkoçi A (2017) Mobile phone-based biosensing: an emerging “diagnostic and communication” technology. Biosens Bioelectron 92:549–562

    Article  PubMed  CAS  Google Scholar 

  • Rizwan M, Mohd-Naim NF, Ahmed MU (2018) Trends and advances in electrochemiluminescence nanobiosensors. Sensors 18:166

    Article  CAS  Google Scholar 

  • Rose DP, Ratterman ME, Griffin DK et al (2015) Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans Biomed Eng 62:1457–1465

    Article  PubMed  Google Scholar 

  • Sempionatto JR, Nakagawa T, Pavinatto A et al (2017) Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 17:1834–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12:4240–4243

    Article  CAS  PubMed  Google Scholar 

  • Shin G, Gomez AM, Al-Hasani R et al (2017) Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93:509–521. e503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Mukherjee MD, Sumana G et al (2014) Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sensors Actuators B Chem 197:385–404

    Article  CAS  Google Scholar 

  • Smith ZJ, Chu K, Espenson AR et al (2011) Cell-phone-based platform for biomedical device development and education applications. PLoS One 6:e17150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sood VR, Gururajan R, Hafeez-Baig A et al (2018) Adoption of mobile devices in the Australian healthcare: A conceptual framework approach. IGI Global, pp 954–977

    Google Scholar 

  • Stedtfeld RD, Tourlousse DM, Seyrig G et al (2012) Gene-Z: a device for point of care genetic testing using a smartphone. Lab Chip 12:1454–1462

    Article  CAS  PubMed  Google Scholar 

  • Steinberg MD, Kassal P, Kereković I et al (2015) A wireless potentiostat for mobile chemical sensing and biosensing. Talanta 143:178–183

    Article  CAS  PubMed  Google Scholar 

  • Steinberg MD, Tkalcec B, Steinberg IM (2016) Towards a passive contactless sensor for monitoring resistivity in porous materials. Sens Actuator B Chem 234:294–299

    Article  CAS  Google Scholar 

  • Sun A, Wambach T, Venkatesh A et al (2014) A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics. IEEE Biomed Circuits Syst Conf 2014:312–315

    PubMed  PubMed Central  Google Scholar 

  • Sun AC, Yao C, Venkatesh A et al (2016) An efficient power harvesting mobile phone-based electrochemical biosensor for point-of-care health monitoring. Sensors Actuators B Chem 235:126–135

    Article  CAS  Google Scholar 

  • Vashist SK, Mudanyali O, Schneider EM et al (2014) Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem 406:3263–3277

    Article  CAS  PubMed  Google Scholar 

  • Védrine C, Leclerc J-C, Durrieu C et al (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18:457–463

    Article  PubMed  CAS  Google Scholar 

  • Velasco-Garcia MN, Mottram T (2003) Biosensor technology addressing agricultural problems. Biosyst Eng 84:1–12

    Article  Google Scholar 

  • Wang J (2000) Survey and summary: from DNA biosensors to gene chips. Nucleic Acids Res 28:3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J (2002) Electrochemical nucleic acid biosensors. Anal Chim Acta 469:63–71

    Article  CAS  Google Scholar 

  • Wang J, Rivas G, Cai X et al (1997) DNA electrochemical biosensors for environmental monitoring. A review. Anal Chim Acta 347:1–8

    Article  CAS  Google Scholar 

  • Wang X, Gartia MR, Jiang J et al (2015) Audio jack based miniaturized mobile phone electrochemical sensing platform. Sensors Actuators B Chem 209:677–685

    Article  CAS  Google Scholar 

  • Wang C, Nie X-G, Shi Y et al (2017a) Direct plasmon-accelerated electrochemical reaction on gold nanoparticles. ACS Nano 11:5897–5905

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lin G, Cui G et al (2017b) White blood cell counting on smartphone paper electrochemical sensor. Biosens Bioelectron 90:549–557

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Jiang J, Wang X et al (2016) Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer. Nanoscale 8:6162–6172

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Zhang Q, Lu Y et al (2017) Passive and wireless near field communication tag sensors for biochemical sensing with smartphone. Sensors Actuators B Chem 246:748–755

    Article  CAS  Google Scholar 

  • Xu D, Huang X, Guo J et al (2018) Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens Bioelectron 110:78–88

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Sun A, Hall D A (2015) Efficient power harvesting from the mobile phone audio jack for mHealth peripherals. Global Humanitarian Technology Conference (GHTC), 2015 IEEE, pp 219–225

    Google Scholar 

  • Yao Y, Li H, Wang D et al (2017) An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva. Analyst 142:3715–3724

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Jiang C, ** J (2019) Flexible freestanding graphene paper-based potentiometric enzymatic aptasensor for ultrasensitive wireless detection of kanamycin. Biosens Bioelectron 123:178–184

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Liu Q (2016) Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron 75:273–284

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang W, Yang Y et al (2015a) Smartphone-based point-of-care testing of salivary α-amylase for personal psychological measurement. Analyst 140:7399–7406

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Jiang J, Chen J et al (2015b) Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2, 4, 6-trinitrotoluene (TNT) detection. Biosens Bioelectron 70:81–88

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Lu Y, Jiang J et al (2015c) Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays. Biosens Bioelectron 67:237–242

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Lu Y, Zhang Q et al (2016) Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensors Actuators B Chem 222:994–1002

    Article  CAS  Google Scholar 

  • Zhu H, Yaglidere O, Su T-W et al (2011) Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11:315–322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31671007, 81801793), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ18C100001), the China Postdoctoral Science Foundation (Grant No. 2018 M630677), and the Collaborative Innovation Center of Traditional Chinese Medicine Health Management of Fujian province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Liu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, S. et al. (2020). Biosensors and Bioelectronics on Smartphone. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_157-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_157-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation