Platinum Group Elements

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 116 Accesses

Definition

The Platinum Group Elements (PGE: Osmium, Iridium, Ruthenium, Rhodium, Platinum, and Palladium), also known as platinum group metals and platinoids, are transition metals located in the d-block of the Periodic Table of Elements (Groups VIII, IX, and X, Periods 5 and 6). The atomic radii of the Os, Ir, and Pt subgroup, caused by the lanthanide contraction of the 4f group elements, are similar to those of the Ru, Rh, Pd subgroup of the PGE. The almost doubling of the number of nucleons with the same atomic radii makes Os, Ir, and Pt the densest elements on Earth. Based on their behavior in magmatic systems, the PGE are subdivided into the iridium-group PGE (Ir-PGE: Os, Ir, Ru, Rh) and the palladium-group PGE (Pd-PGE: Pt, Pd) (Barnes et al. 1985; Barnes 1999).

Introduction

The PGE were discovered in the eighteenth through early nineteenth centuries by Lewis (1753, 1757), Tennant (1804), and Wollaston (1805); a detailed account of the history of the PGE can be found in McDonald...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 481.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 695.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alard O, Griffin WL, Lorand J-P, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulfides. Nature 407(6806):891–894

    Article  Google Scholar 

  • Arculus RJ, Delano JW (1981) Siderophile element abundances in the upper mantle – evidence for a sulfide signature and equilibrium with the core. Geochim Cosmochim Acta 45(8):1331–1343

    Article  Google Scholar 

  • Barnes S-J (1999) Elements: platinum group. In: Marshall CP, Fairbringe RW (eds) Encyclopedia of geochemistry. Kluwer Academic Publishers, Dordrecht/Boston/London, p 219

    Google Scholar 

  • Barnes S-J, Naldrett AJ, Gorton MP (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol 53(3–4):303–323

    Article  Google Scholar 

  • Becker H, Horan MF, Walker RJ, Gao S, Lorand J-P, Rudnick RL (2006) Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70(17):4528–4550

    Article  Google Scholar 

  • Bermingham KR, Walker RJ, Worsham EA (2016) Refinement of high precision Ru isotope analysis using negative thermal ionization mass spectrometry. Int J Mass Spectrom 403:15–26

    Article  Google Scholar 

  • Borisov A, Palme H (1995) The solubility of iridium in silicate melts: new data from experiments with Ir10Pt90 alloys. Geochim Cosmochim Acta 59(3):481–485

    Article  Google Scholar 

  • Borisov A, Palme H, Spettel B (1994) Solubility of palladium in silicate melts: implications for core formation in the Earth. Geochim Cosmochim Acta 58(2):705–716

    Article  Google Scholar 

  • Brandon AD, Walker RJ, Puchtel IS (2006) Platinum-osmium isotope evolution of the Earth’s mantle: constraints from chondrites and Os-rich alloys. Geochim Cosmochim Acta 70(8):2093–2103

    Article  Google Scholar 

  • Brenan JM, McDonough WF, Dalpé C (2003) Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth Planet Sci Lett 212(1–2):135–150

    Article  Google Scholar 

  • Brenan JM, Finnigan CF, McDonough WF, Homolova V (2012) Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: the importance of ferric iron. Chem Geol 302–303:16–32

    Article  Google Scholar 

  • Brenan JM, Bennett NR, Zajacz Z (2016) Experimental results on fractionation of the Highly Siderophile Elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation. Rev Mineral Geochem 81(1):1–87

    Article  Google Scholar 

  • Carlson RW (2005) Application of the Pt-Re-Os isotopic systems to mantle geochemistry and geochronology. Lithos 82(3–4):249–272

    Article  Google Scholar 

  • Chen JH, Papanastassiou DA, Wasserburg GJ (2010) Ruthenium endemic isotope effects in chondrites and differentiated meteorites. Geochim Cosmochim Acta 74(13):3851–3862

    Article  Google Scholar 

  • Chou C-L, Shaw DM, Crocket JH (1983) Siderophile trace elements in the Earth’s oceanic crust and upper mantle. J Geophys Res 88(S2):A507–A518

    Article  Google Scholar 

  • Creaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass-spectrometry of osmium, rhenium, and iridium. Geochim Cosmochim Acta 55(1):397–401

    Article  Google Scholar 

  • Fischer-Gödde M, Becker H, Wombacher F (2011) Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem Geol 280(3–4):365–383

    Article  Google Scholar 

  • Fischer-Gödde M, Burkhardt C, Kruijer TS, Kleine T (2015) Ru isotope heterogeneity in the solar protoplanetary disk. Geochim Cosmochim Acta 168:151–171

    Article  Google Scholar 

  • Fleet ME, Crocket JH, Liu M, Stone WE (1999) Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits. Lithos 47(1–2):127–142

    Article  Google Scholar 

  • Fujii T, Moynier F, Telouk P, Albarède F (2006) Mass-independent isotope fractionation of molybdenum and ruthenium and the origin of isotopic anomalies in Murchison. Astrophys J 647(2):1506

    Article  Google Scholar 

  • Gelinas A, Kring DA, Zurcher L, Urrutia-Fucugauchi J, Morton O, Walker RJ (2004) Osmium isotope constraints on the proportion of bolide component in Chicxulub impact melt rocks. Meteorit Planet Sci 39(6):1003–1008

    Article  Google Scholar 

  • Greenfield S (1994) Inductively coupled plasmas in atomic fluorescence spectrometry. A review. J Anal At Spectrom 9(5):565–592

    Article  Google Scholar 

  • Jones JH, Drake MJ (1986) Geochemical constraints on core formation in the Earth. Nature 322(6076):221–228

    Article  Google Scholar 

  • Keays RR (1995) The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 34(1–3):1–18

    Article  Google Scholar 

  • Lee SR, Horton JW, Walker RJ (2006) Confirmation of a meteoritic component in impact-melt rocks of the Chesapeake Bay impact structure, Virginia, USA – evidence from osmium isotopic and PGE systematics. Meteorit Planet Sci 41(6):819–833

    Article  Google Scholar 

  • Lewis W (1753) Experimental examination of a white metallic substance said to be found in the gold mines of the Spanish West Indies, and is there known by the appellations of platina, platina di Pinto, Juan Blanca. Philos Trans R Soc 48:638–689

    Article  Google Scholar 

  • Lewis W (1757) Experimental examination of platina. Philos Trans R Soc 50:156–166

    Article  Google Scholar 

  • Li J, Agee CB (1996) Geochemistry of mantle-core differentiation at high pressure. Nature 381(6584):686–689

    Article  Google Scholar 

  • Lorand J-P, Alard O (2001) Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France). Geochim Cosmochim Acta 65(16):2789–2806

    Article  Google Scholar 

  • Luguet A, Shirey SB, Lorand J-P, Horan MF, Carlson RW (2007) Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochim Cosmochim Acta 71(12):3082–3097

    Article  Google Scholar 

  • Maier WD (2005) Platinum-group element (PGE) deposits and occurrences: mineralization styles, genetic concepts, and exploration criteria. J Afr Earth Sci 41(3):165–191

    Article  Google Scholar 

  • McDonald D, Hunt LB (1982) A history of platinum and its allied metals. Johnson-Matthey, London

    Google Scholar 

  • Morgan JW (1985) Osmium isotope constraints on Earth’s late accretionary history. Nature 317(6039):703–705

    Article  Google Scholar 

  • Morgan JW (1986) Ultramafic xenoliths: clues to Earth’s late accretionary history. J Geophys Res 91(B12):12375–12387

    Article  Google Scholar 

  • Mungall JE, Naldrett AJ (2008) Ore deposits of the platinum-group elements. Elements 4(4):253–258

    Article  Google Scholar 

  • Naldrett T, Kinnaird J, Wilson A, Chunnett G (2008) Concentration of PGE in the Earth’s crust with special reference to the Bushveld complex. Earth Science Frontiers 15(5):264–297

    Article  Google Scholar 

  • Puchtel IS, Humayun M (2000) Platinum group elements in Kostomuksha komatiites and basalts: implications for oceanic crust recycling and core-mantle interaction. Geochim Cosmochim Acta 64(24):4227–4242

    Article  Google Scholar 

  • Puchtel IS, Humayun M (2001) Platinum group element fractionation in a komatiitic basalt lava lake. Geochim Cosmochim Acta 17(65):2979–2993

    Article  Google Scholar 

  • Puchtel IS, Humayun M, Campbell A, Sproule R, Lesher CM (2004) Platinum group element geochemistry of komatiites from the Alexo and Pyke Hill areas, Ontario, Canada. Geochim Cosmochim Acta 68(6):1361–1383

    Article  Google Scholar 

  • Puchtel IS, Walker RJ, James OB, Kring DA (2008) Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: implications for the late accretion history of the Moon and Earth. Geochim Cosmochim Acta 72(12):3022–3042

    Article  Google Scholar 

  • Puchtel IS, Walker RJ, Brandon AD, Nisbet EG (2009) Pt-Re-Os and Sm-Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites. Geochim Cosmochim Acta 73(20):6367–6389

    Article  Google Scholar 

  • Puchtel IS, Walker RJ, Touboul M, Nisbet EG, Byerly GR (2014) Insights into early Earth from the Pt-Re-Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochim Cosmochim Acta 125:394–413

    Article  Google Scholar 

  • Rauch S, Morrison GM (2008) Environmental relevance of the platinum-group elements. Elements 4(4):259–263

    Article  Google Scholar 

  • Rehkämper M, Halliday AN, Fitton JG, Lee D-C, Wieneke M, Arndt NT (1999) Ir, Ru, Pt and Pd in basalts and komatiites: new constraints for the geochemical behavior of the platinum group elements in the mantle. Geochim Cosmochim Acta 63(22):3915–3934

    Article  Google Scholar 

  • Righter K, Drake MJ (1997) Metal-silicate equilibrium in a homogeneously accreting earth: new results for Re. Earth Planet Sci Lett 146(3–4):541–553

    Article  Google Scholar 

  • Sharp M, Gerasimenko I, Loudin LC, Liu J, James OB, Puchtel IS, Walker RJ (2014) Characterization of the dominant impactor signature for Apollo 17 impact melt rocks. Geochim Cosmochim Acta 131:62–80

    Article  Google Scholar 

  • Shirey SB, Walker RJ (1998) The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annu Rev Earth Planet Sci 26:423–500

    Article  Google Scholar 

  • Tennant S (1804) On two metals, found in the black powder remaining after the solution of platina. Philos Trans R Soc Lond 94:411–418

    Article  Google Scholar 

  • Völkening J, Walczyk T, Heumann KG (1991) Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process 105(2):147–159

    Article  Google Scholar 

  • Walker RJ (2009) Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem Erde-Geochem 69(2):101–125

    Article  Google Scholar 

  • Walker RJ, Morgan JW, Beary ES, Smoliar MI, Czamanske GK, Horan MF (1997) Applications of the 190Pt-186Os isotope system to geochemistry and cosmochemistry. Geochim Cosmochim Acta 61(22):4799–4807

    Article  Google Scholar 

  • Walker RJ, Bermingham K, Liu J, Puchtel IS, Touboul M, Worsham EA (2015) In search of late-stage planetary building blocks. Chem Geol 411:125–142

    Article  Google Scholar 

  • Wollaston WH (1805) On the discovery of palladium; with observations on other substances found with platina. Philos Trans R Soc Lond 95:316–330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor S. Puchtel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Puchtel, I.S. (2018). Platinum Group Elements. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_274

Download citation

Publish with us

Policies and ethics

Navigation